Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

MATERI 6 BENTUK-BENTUK NORMAL DNF/SOP/MINTERMCNF/POS/MAXTERM BENTUK KANONIK FUNGSI BOOLE KONVERSI ANTAR BENTUK NORMAL.

Presentasi serupa


Presentasi berjudul: "MATERI 6 BENTUK-BENTUK NORMAL DNF/SOP/MINTERMCNF/POS/MAXTERM BENTUK KANONIK FUNGSI BOOLE KONVERSI ANTAR BENTUK NORMAL."— Transcript presentasi:

1 MATERI 6 BENTUK-BENTUK NORMAL DNF/SOP/MINTERMCNF/POS/MAXTERM BENTUK KANONIK FUNGSI BOOLE KONVERSI ANTAR BENTUK NORMAL

2 MENGAPA BENTUK NORMAL? (1) Kemungkinan nilai dalam tabel kebenaran: Kemungkinan nilai dalam tabel kebenaran: –Semua salah (kontradiksi) –Semua benar (tautologi) –Memuat paling sedikit 1 benar (satisfiable) Cara mencari nilai kebenaran, biasanya menggunakan tabel kebenaran. Cara mencari nilai kebenaran, biasanya menggunakan tabel kebenaran.

3 MENGAPA BENTUK NORMAL? (2) Pembuatan tabel kebenaran tidak terlalu praktis, bahkan dengan bantuan komputer, terutama untuk jumlah variabel yang besar. Pembuatan tabel kebenaran tidak terlalu praktis, bahkan dengan bantuan komputer, terutama untuk jumlah variabel yang besar. Prosedur yang lebih mudah adalah dengan mereduksi ke bentuk-bentuk normal. Prosedur yang lebih mudah adalah dengan mereduksi ke bentuk-bentuk normal.

4 JENIS BENTUK NORMAL Disjunctive normal form (DNF) Disjunctive normal form (DNF) atau Sum of products (SOP) atau Minterm Conjunctive normal form (CNF) Conjunctive normal form (CNF) atau Product of sums (POS) atau Maxterm

5 DNF/SOP DNF terdiri dari penjumlahan dari beberapa perkalian (sum of products = SOP). DNF terdiri dari penjumlahan dari beberapa perkalian (sum of products = SOP). Dalam tabel kebenaran, DNF merupakan perkalian-perkalian yang menghasilkan nilai 1. Dalam tabel kebenaran, DNF merupakan perkalian-perkalian yang menghasilkan nilai 1. Contoh: xy + x’y Contoh: xy + x’y Setiap suku (term) disebut minterm Setiap suku (term) disebut minterm Simbol minterm :  m Simbol minterm :  m

6 CNF/POS CNF terdiri dari perkalian dari beberapa penjumlahan (product of sum = POS). CNF terdiri dari perkalian dari beberapa penjumlahan (product of sum = POS). Dalam tabel kebenaran, CNF merupakan penjumlahan-penjumlahan yang menghasilkan nilai 0. Dalam tabel kebenaran, CNF merupakan penjumlahan-penjumlahan yang menghasilkan nilai 0. Contoh: (x+y). (x’+y) Contoh: (x+y). (x’+y) Setiap suku (term) disebut maxterm Setiap suku (term) disebut maxterm Simbol maxterm :  M Simbol maxterm :  M

7 MINTERM & MAXTERM Cara yang dipakai untuk mempermudah menyatakan suatu ekspresi logika Cara yang dipakai untuk mempermudah menyatakan suatu ekspresi logika Pada dasarnya adalah mendaftar nomor baris atau nilai desimal dari kombinasi variabel input yang outputnya : Pada dasarnya adalah mendaftar nomor baris atau nilai desimal dari kombinasi variabel input yang outputnya : –berharga "1" untuk minterm –berharga "0" untuk maxterm.

8 Tabel Minterm dan Maxterm (1)

9 Tabel Minterm dan Maxterm (2)

10 Membentuk Persamaan Boole dari Tabel kebenaran (1) Jika yang dilihat adalah output "1" maka persamaan mempunyai bentuk "Sum of Product (SOP)“/DNF/ Minterm Jika yang dilihat adalah output "1" maka persamaan mempunyai bentuk "Sum of Product (SOP)“/DNF/ Minterm Jika diberi input berikut : Jika diberi input berikut : X Y Z =  ditulis : X’Y’Z’ X Y Z =  ditulis : XYZ X Y Z =  ditulis : X’YZ

11 Membentuk Persamaan Boole dari Tabel kebenaran (2) Jika yang dilihat adalah output “0" maka persamaan mempunyai bentuk " Product of Sum (POS)“/CNF/ Maxterm Jika yang dilihat adalah output “0" maka persamaan mempunyai bentuk " Product of Sum (POS)“/CNF/ Maxterm Jika diberi input berikut : Jika diberi input berikut : X Y Z =  ditulis : (X+Y+Z) X Y Z =  ditulis : (X’+Y’+Z’) X Y Z =  ditulis : (X+Y’+Z’)

12 Contoh 1 Nyatakan dalam bentuk SOP dan POS Nyatakan dalam bentuk SOP dan POS

13 Penyelesaian Contoh 1 (1) SOP/DNF/MINTERM SOP/DNF/MINTERM Kombinasi nilai-nilai peubah yang menghasilkan nilai fungsi sama dengan 1 adalah 01, maka fungsi Booleannya dalam bentuk SOP: f(x, y) = x’y  01  1 atau f(x, y) = m 1 =  m (1)

14 Penyelesaian Contoh 1 (2) POS/CNF/MAXTERM POS/CNF/MAXTERM Kombinasi nilai-nilai peubah yang menghasilkan nilai fungsi sama dengan 0 adalah 00, 10, 11, maka fungsi Booleannya dalam bentuk POS: f(x,y)=(x+y)(x’+y)(x’+y’)atau f(x, y) = M 0 M 2 M 3 =  M(0, 2, 3)

15 Contoh 2 Nyatakan dalam bentuk Nyatakan dalam bentuk SOP dan POS

16 Penyelesaian Contoh 2 (1) SOP SOP Kombinasi nilai-nilai peubah yang menghasilkan nilai fungsi sama dengan 1 adalah 001, 100, dan 111, maka fungsi Booleannya dalam bentuk SOP: f(x, y, z) = x’y’z + xy’z’ + xyz atau f(x, y, z) = m 1 + m 4 + m 7 =  m (1, 4, 7) =  m (1, 4, 7)

17 Penyelesaian Contoh 2 (2) POS POS Kombinasi nilai-nilai peubah yang menghasilkan nilai fungsi sama dengan 0 adalah 000, 010, 011, 101, dan 110, maka fungsi Booleannya dalam bentuk POS: f(x,y,z)= (x+y+z)(x+y’+z)(x+y’+z’) (x’+y+z’)(x’+y’+z) (x’+y+z’)(x’+y’+z)atau f(x, y, z) = M 0 M 2 M 3 M 5 M 6 =  M(0, 2, 3, 5, 6) =  M(0, 2, 3, 5, 6)

18 BENTUK KANONIK FUNGSI BOOLEAN (1) Bentuk kanonik/bentuk lengkap adalah bentuk fungsi boolean dimana setiap term mengandung/memuat semua variabel yang ada Bentuk kanonik/bentuk lengkap adalah bentuk fungsi boolean dimana setiap term mengandung/memuat semua variabel yang ada –melengkapi literal untuk setiap suku agar jumlahnya sama –Jumlah literal sama dengan jumlah variabel

19 BENTUK KANONIK FUNGSI BOOLEAN (2) Contoh bentuk kanonik: Contoh bentuk kanonik: –f(x,y) = xy’ + xy  Minterm –f(x,y,z) = xyz’ + x’y’z +xyz  Minterm –f(x,y) = (x+y). (x’+y)  Maxterm Contoh bentuk non-kanonik : Contoh bentuk non-kanonik : –f(x,y,z) = x + y’z  Minterm –f(x,y,z) = (x+y+z’). (x+z). (y’ + z)  Maxterm

20 Contoh 3 Nyatakan fungsi Boolean f(x,y,z) = x + y’z dalam bentuk kanonik SOP dan POS. Nyatakan fungsi Boolean f(x,y,z) = x + y’z dalam bentuk kanonik SOP dan POS.

21 Penyelesaian Contoh 3 (1) SOP/DNF/Minterm SOP/DNF/Minterm x = x (y + y’) = xy + xy’ = xy + xy’ = xy (z + z’) + xy’(z + z’) = xy (z + z’) + xy’(z + z’) = xyz + xyz’ + xy’z + xy’z’ = xyz + xyz’ + xy’z + xy’z’ y’z = y’z (x + x’) = xy’z + x’y’z = xy’z + x’y’z Jadi f(x, y, z) = x + y’z = x + y’z = xyz + xyz’ + xy’z + xy’z’ + xy’z + x’y’z = xyz + xyz’ + xy’z + xy’z’ + xy’z + x’y’z = x’y’z + xy’z’ + xy’z + xyz’ + xyz = x’y’z + xy’z’ + xy’z + xyz’ + xyzatau f(x, y, z)= m 1 + m 4 + m 5 + m 6 + m 7 f(x, y, z)= m 1 + m 4 + m 5 + m 6 + m 7 =  m(1,4,5,6,7)

22 Penyelesaian Contoh 3 (2) POS/CNF/Maxterm POS/CNF/Maxterm f(x, y, z) = x + y’z = (x + y’)(x + z) = (x + y’)(x + z) x + y’ = x + y’ + zz’ = (x + y’ + z)(x + y’ + z’) = (x + y’ + z)(x + y’ + z’) x + z = x + z + yy’ = (x + y + z)(x + y’ + z) = (x + y + z)(x + y’ + z) Jadi, f(x, y, z) = (x+y’+z)(x+y’+z’)(x+y+z)(x+y’+ z) = (x+y’+z)(x+y’+z’)(x+y+z)(x+y’+ z) = (x + y + z)(x + y’ + z)(x + y’ + z’) = (x + y + z)(x + y’ + z)(x + y’ + z’) atau f(x, y, z) = M 0 M 2 M 3 =  M(0, 2, 3)

23 Konversi Antar Bentuk Normal (1) Konversi SOP menjadi POS Konversi SOP menjadi POS Komplemen Minterm  Maxterm Konversi POS menjadi SOP Konversi POS menjadi SOP –Komplemen Maxterm  Minterm

24 Konversi Antar Bentuk Normal (2) Misalkan Misalkan f(x, y, z) =  m (1, 4, 5, 6, 7) dan f’ adalah fungsi komplemen dari f, maka f(x, y, z) =  m (1, 4, 5, 6, 7) dan f’ adalah fungsi komplemen dari f, maka f’(x, y, z) =  m (0, 2, 3) = m 0 + m 2 + m 3 = m 0 + m 2 + m 3 Dengan menggunakan hukum De Morgan, diperoleh fungsi f dalam bentuk POS. Dengan menggunakan hukum De Morgan, diperoleh fungsi f dalam bentuk POS.

25 Konversi Antar Bentuk Normal (3) f(x, y, z) f(x, y, z) = (f’(x, y, z))’= (m 0 +m 2 +m 3 )’ = (f’(x, y, z))’= (m 0 +m 2 +m 3 )’ = m 0 ’. m 2 ’. m 3 ’ = m 0 ’. m 2 ’. m 3 ’ = (x’y’z’)’ (x’y z’)’ (x’y z)’ = (x’y’z’)’ (x’y z’)’ (x’y z)’ = (x + y + z) (x +y’+z) (x+ y’+ z’) = (x + y + z) (x +y’+z) (x+ y’+ z’) = M 0 M 2 M 3 = M 0 M 2 M 3 =  M (0,2,3) =  M (0,2,3) Jadi, f(x, y, z) Jadi, f(x, y, z) =  m (1, 4, 5, 6, 7) =  M (0,2,3). =  m (1, 4, 5, 6, 7) =  M (0,2,3). Kesimpulan: m j ’ = M j Kesimpulan: m j ’ = M j

26 Contoh 4 Nyatakan Nyatakan f(x, y, z)=  M(0,2,4,5) dalam SOP f(x, y, z)=  M(0,2,4,5) dalam SOP Penyelesaian : Penyelesaian : f(x, y, z) =  m (1, 3, 6, 7) f(x, y, z) =  m (1, 3, 6, 7) Nyatakan Nyatakan g(w, x, y, z)=  m(1,2,5,6,10,15) dalam POS Penyelesaian: g(w, x, y, z) =  M (0,3,4,7,8,9,11,12,13,14)


Download ppt "MATERI 6 BENTUK-BENTUK NORMAL DNF/SOP/MINTERMCNF/POS/MAXTERM BENTUK KANONIK FUNGSI BOOLE KONVERSI ANTAR BENTUK NORMAL."

Presentasi serupa


Iklan oleh Google