UNIVERSITAS MERCU BUANA JAKARTA 2013

Slides:



Advertisements
Presentasi serupa
UNIVERSITAS MERCU BUANA JAKARTA
Advertisements

D e r e t MATEMATIKA EKONOMI.
D e r e t MATEMATIKA EKONOMI
MATEMATIKA EKONOMI Bagian 1 - Deret
7. INDUKSI MATEMATIKA.
Materi Matematika Bisnis
DERET Matematika 2.
BARISAN DAN DERET Yeni Puspita, SE., ME.
DERET BILANGAN.
PROGRAM STUDI MANAJEMEN/AKUNTANSI UNIVERSITAS PGRI ADI BUANA SURABAYA
MATEMATIKA EKONOMI Bagian 1 - Deret DOSEN FEBRIYANTO, SE., MM.
BARISAN DAN DERET ARITMATIKA Barisan Aritmatika Aritmatika deret Aritmatika.
UNIVERSITAS MERCU BUANA JAKARTA 2012
UNIVERSITAS MERCU BUANA JAKARTA MODUL 1 MATEMATIKA EKONOMI
PERTEMUAN 2 DERET DAN TERAPANNYA.
MANAJEMEN INVESTASI DAN PASAR MODAL
Teori Permainan MODUL 14 Tujuan Instruksional Khusus :
MANAJEMEN INVESTASI DAN PASAR MODAL
DERET Bab 4 Dumairy.
DERET Bab 4 Dumairy.
PANGKAT, AKAR, DAN LOGARITMA
MODUL 1. HIMPUNAN TUJUAN INSTRUKSIONAL KHUSUS MODUL I
MATEMATIKA EKONOMI BARISAN DAN DERET ARITMETIKA
Modul 5 FUNGSI PERMINTAAN, FUNGSI PENAWARAN DAN KESEIMBANGAN PASAR
pendekatan pengeluaran yang linear
D e r e t MATEMATIKA EKONOMI.
UNIVERSITAS MERCU BUANA JAKARTA 2009
MANAJEMEN INVESTASI DAN PASAR MODAL
Modul 6 FUNGSI NON LINEAR Tujuan Instruksional Khusus:
ARITMATIKA By Atmini Dhoruri,MS.
MATEMATIKA MODUL 6 Oleh UNIVERSITAS MERCU BUANA JAKARTA 2012 Priyono
DIFERENSIAL FUNGSI MAJEMUK
PERSIAPAN UJIAN NASIONAL
MATEMATIKA 4 TPP: 1202 Disusun oleh Dr. Ir. Dwiyati Pujimulyani,MP
MATEMATIKA MODUL 8 Oleh UNIVERSITAS MERCU BUANA JAKARTA 2012 Priyono
BARISAN & DERET.
: Manajemen Investasi dan Pasar Modal
Modul 7 LIMIT Tujuan Instruksional Khusus:
MATEMATIKA EKONOMI Pertemuan 3: Deret dan Penerapannya
DERET HITUNG DAN DERET UKUR
POKOK BAHASAN 1 BARISAN DAN DERET
OLEH : Hesti Dwi Agusdiyanti, S. Si SMA TITIAN TERAS JAMBI
BARISAN BILANGAN a = U1 = suku ke-1 Un = suku ke-n +2 b = beda
UNIVERSITAS MERCU BUANA JAKARTA
Jum’at Kliwon 14 Oktober 2011.
Barisan dan Deret Miftahul Sakinah.
BARISAN DAN DERET DAN PENERAPANNYA.
BARISAN DAN DERET Oleh : Haryono Fajar.
MATEMATIKA DERET HITUNG DAN DERET UKUR.
DERET by. Elia Ardyan, MBA.
DERET ialah rangkaian bilangan yang tersusun secara teratur dan memenuhi kaidah-kadiah tertentu. Bilangan-bilangan yang merupakan unsur dan pembentuk sebuah.
D e r e t MATEMATIKA EKONOMI.
DERET & PENERAPANNYA Jaka Wijaya Kusuma M.Pd Matematika Ekonomi.
BARISAN DAN DERET MATEMATIKA
MATEMATIKA EKONOMI Pertemuan 3: Deret dan Penerapannya
Baris dan deret Matematika ekonomi.
02 SESI 2 MATEMATIKA BISNIS Viciwati STl MSi.
MATEMATIKA EKONOMI Pertemuan 3: Deret dan Penerapannya
RANGKUMAN BARISAN DAN DERET
blog : soesilongeblog.wordpress.com
D E R E T.
Peta Konsep. Peta Konsep C. Barisan dan Deret Geometri.
Peta Konsep. Peta Konsep A. Barisan dan Deret Geometri.
UNIVERSITAS MERCU BUANA JAKARTA
BARISAN & DERET Matematika Diskrit.
C. Barisan dan Deret Geometri
B. Barisan dan Deret Geometri Tak Hingga
DERET MIFTAHUL SAKINAH.
S1 KESEHATAN MASYARAKAT FAKULTAS KESEHATAN JAKARTA 2019.
DERET HITUNG DAN DERET UKUR By: Megawati Syahril, MBA, SE.
Transcript presentasi:

UNIVERSITAS MERCU BUANA JAKARTA 2013 MODUL 3 MATEMATIKA Oleh Priyono, SE., ME. FAKULTAS EKONOMI UNIVERSITAS MERCU BUANA JAKARTA 2013 http://www.mercubuana.ac.id

(pembeda 5) Dimana : A. PENDAHULUAN Deret adalah rangkaian bilangan yang tersusun secara teratur dan memenuhi kaidah tertentu. Bilangan-bilangan yang merupakan unsure dan pembentuk sebuah deret dinamakan suku. Keteraturan rangkaian bialangan yang membentuk sebuah deret terlihat pada pola perubahan bilangan-bilangan tersebut dari satu suku ke suku berikutnya. Dilihat dari jumlah suku yang membentuknya, deret digolongkan atas deret berhingga dan deret tak berhingga. Deret berhingga adalah deret yang jumlah suku-sukunya tertentu, sedangkan deret tak berhingga adalah deret yang jumlah suku-sukunya tidak terbatas. Dilihat dari pola perubahan bilangan pada suku- sukunya, deret bisa dibeda-bedakan menjadi deret hitung, deret ukur dan deret harmoni. B. DERET HITUNG Deret hitung adalah deret yang perubahan suku-sukunya berdasarkan penjumlahan terhadap sebuah bilangan tertentu. Bilangan yang membedakan suku- suku dari deret hitung ini dinamakan pembeda, yang tak lain merupakan selisih antara nilai-nilai dua suku yang berurutan. Contoh: 1. 7, 12, 17, 22, 27, 32 2. 93, 83, 73, 63, 53, 43 (pembeda 5) (pembeda –10) 1. Suku ke-n dari Deret Hitung Besarnya suku tertentu (ke-n) dari sebuah deret hitung dapat dihitung melalui sebuah rumus. Contoh: 7, 12, 17, 22, 27, 32 S1 S2 S3 S4 S5 S6 Sn = a + ( n - 1) b Dimana : a : suku pertama atau S1 b : pembeda n : indeks suku Matematika Bisnis Proyono, SE. ME. Pusat Bahan Ajar dan Elearning Universitas Mercu Buana http://www.mercubuana.ac.id ‘12 2

Rumus ini masih dapat disederhanakan: 2. Jumlah n suku Jumlah sebuah deret hitung sampai dengan suku tertentu tak lain adalah jumlah nilai suku-sukunya, sejak suku pertama (S1 atau a) sampai suku ke n (Sn) yang bersangkutan. n Jn = ∑ Si = S1 + S2 + S3 + … + Sn i= 1 Berdasarkan rumus Sn = a + ( n – 1) b sebelumnya, maka masing-masing Si dapat diuraikan. Dengan menguraikan masing-masing Si maka Ji juga dapat diperoleh dan pada akhirnya dapat diperoleh Jn. Rumus: n n Jn = na + — (n – 1) b 2 atau Jn = — { 2a + (n - 1) b } 2 Rumus ini masih dapat disederhanakan: n Jn = — ( a + Sn ) 2 Contoh 1 4, 6, 8, 10, 12, 14,… b = 2 Tentukan jumlah 11 suku pertama dan 36 suku pertama dari deret hitung tersebut! Jawab: J10 = 10/2 (4 + 22) J10 = 5 (26) J10 = 130 J36 = 36/2 (4 + 74) J36 = 18 (78) J36 = 1404 Contoh 2 6, 11, 16, 21, 26, 31, 36, ….. b = 5 Tentukan jumlah 12 suku pertama dan 32 suku pertama dari deret hitung tersebut! J12 = 12/2 (6 + 61) J12 = 6 (67) J12 = 402 ‘12 Matematika Bisnis Proyono, SE. ME. Pusat Bahan Ajar dan Elearning Universitas Mercu Buana http://www.mercubuana.ac.id 4