Chapter 4 Invers Matriks.

Slides:



Advertisements
Presentasi serupa
BAB 3. MATRIKS 3.1 MATRIKS Definisi: [Matriks]
Advertisements

MATRIKS 1. Pengertian Matriks
Matriks 2 1. Menentukan invers suatu matriks brordo 2x2
Matriks Definisi Matriks adalah kelompok bilangan yang disusun dalam suatu jajaran berbentuk persegi atau persegi panjang yang terdiri dari baris dan kolom.
INVERS MATRIKS (dengan adjoint)
DETERMINAN 2.1. Definisi   DETERMINAN adalah suatu bilangan ril yang diperoleh dari suatu proses dengan aturan tertentu terhadap matriks bujur sangkar.
DETERMINAN MATRIK Yulvi Zaika.
DETERMINAN MATRIKS Misalkan
Pertemuan 25 Matriks.
LANJUTAN MATRIKS Oleh : KELOMPOK 2 : - ERNAWATI EVI NOVIANTI AGISIANA RIANI AUGUSTIA RIFNA.
DETERMINAN DAN INVERSE MATRIKS.
BAB III DETERMINAN.
MATRIKS.
PERMUTASI Merupakan suatu himpunan bilangan bulat {1,2,…,n} yang disusun dalam suatu urutan tanpa penghilangan atau pengulangan. Contoh : {1,2,3} ada 6.
MATRIKS.
INVERS MATRIKS Pengertian Invers Matriks
Determinan Pertemuan 2.
PERSAMAAN LINEAR DETERMINAN.
Matrik Invers Suatu bilangan jika dikalikan dengan kebalikannya, maka hasilnya adalah 1. Misalkan atau = 1, Demikian juga halnya dengan matrik.
Determinan.
BAB 3 DETERMINAN.
MATRIKS.
Matriks dan Determinan
Matematika Elektro 2005 Teknik Elektro Universitas Gadjah Mada
INVERS MATRIKS.
Matakuliah : K0352/Matematika Bisnis
PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS TEKNIK INFORMATIKA STMIK HANDAYANI MAKASSSAR MATRIKS Novita Dwi Maharani S, S.Si, M.Pd.
INVERS MATRIKS (dengan adjoint)
Determinan (lanjutan)
MATRIKS EGA GRADINI, M.SC.
Transfos Suatu Matriks
Determinan Matriks Kania Evita Dewi.
DETERMINAN.
Chapter 4 Determinan Matriks.
Chapter 4 Matriks 4x4.
Operasi Matriks Pertemuan 24
Matriks Invers (Kebalikan)
Determinan Matriks Kania Evita Dewi.
Determinan Matriks Ordo 3 × 3
Determinan dan Invers Daniel Rudy Kristanto, S.Pd
MATRIKS.
DETERMINAN Konsep determinan dan invers matrik.
DETERMINAN Pengertian Determinan
DETERMINAN DARI MATRIKS Pertemuan - 4
MATRIKS.
Dosen Pengampu Rusanto, SPd., MSi
Operasi Matrik.
DETERMINAN MATRIKS Misalkan
MATRIKS determinan, invers dan aplikasinya
MATRIKS Matematika Ekonomi Dosen : Mike Triani, SE, MM.
Widita Kurniasari Universitas Trunojoyo
Aljabar Linear Pertemuan 10 Matrik II Erna Sri Hartatik.
INVERS MATRIKS.
DETERMINAN MATRIKS Misalkan
1 MATRIKS JENIS MATRIKS MATRIKS TRANSPOSE OPERASI MATRIKS DETERMINAN MATRIKS INVERS MATRIKS APLIKASI MATRIKS SUPRIANTO, S.Si., M.Si., Apt.
DETERMINAN MATRIKS Misalkan
MATRIKS.
Operasi Baris Elementer
Widita Kurniasari Universitas Trunojoyo
Widita Kurniasari Universitas Trunojoyo
Widita Kurniasari Universitas Trunojoyo Madura
Peta Konsep. Peta Konsep B. Invers Perkalian Matriks Ordo (3 x 3)
Widita Kurniasari Universitas Trunojoyo
Widita Kurniasari Universitas Trunojoyo
Widita Kurniasari Universitas Trunojoyo
DETERMINAN 1.Pengertian Determinan 2.Perhitungan Determinan Matriks Bujur Sangkar 3.Sifat-sifat Determinan 4.Menghitung Determinan Menggunakan Sifat-Sifat.
Peta Konsep. Peta Konsep B. Invers Perkalian Matriks Ordo (3 x 3)
BAB 3. MATRIKS 3.1 MATRIKS Definisi: [Matriks]
Determinan dan invers matriks Silabus Determinan dan inves matriks berordo 2x2 Determinan dan invers matriks ber ordo 3x3 Tujuan Pembelajaran Matematika.
Aplikasi Matriks SISTEM PERSAMAAN LINIER. SISTEM PERSAMAAN LINEAR A. Sistem Persamaan Linear Jika sistem m persamaan linear dalam n bilangan tak diketahui.
Transcript presentasi:

Chapter 4 Invers Matriks

Objective Mahasiswa mampu menjelaskan Invers matriks Mampu menyelesaikan Invers matriks Mampu menyelesaikan spl menggunakan invers matriks

Definisi Jika A dan B matriks bujur sangkar sedemikian rupa sehingga A B = B A = I , maka B disebut balikan atau invers dari A dan dapat dituliskan B = A − 1 ( B sama dengan invers A ). Matriks B juga mempunyai invers yaitu A maka dapat dituliskan A = B − 1. Jika tidak ditemukan matriks B, maka A dikatakan matriks tunggal (singular). Jika matriks B dan C adalah invers dari A maka B = C.

Contoh Jika A dan B matriks berodo sama 2x2 B = A= AB = = = I (matriks identitas) BA = = = I (matriks identitas) Maka dapat dituliskan bahwa B = A − 1 (B Merupakan invers dari A B = A=

Invers Matriks 1. Menentukan invers suatu matriks brordo 2x2 Jika matriks A = dengan det A = ad-bc maka invers dari matris A : A-1 = 1 (adjoint A) |A| A-1 = Dengan syarat bahwa det A= ad-bc ≠ 0

Langkah Penyelesaian 1. Elemen-elemen pada diagonal utama dipertukarkan 2. Tanda elemen-elemen pada diagonal samping diubah. Jika elemen itu (+) diubah menjadi (-) dan jika elemen itu (-) diganti (+) 3. Matriks yang diperoleh pada langkah 1 dan 2 di atas kemudian dibagi dengan determinan matriks persegi awal.

Tentukanlah invers matriks berikut ini. Jawab: Det A = Karena det A≠ 0 maka matriks A mempunyai invers. Invers dari A adalah

Menentukan invers suatu matriks berordo 3x3 Pengertian Minor Misalkan A adalah matriks persegi berordo tiga yang disajikan dalam bentuk: Jika elemen-elemen yang terletak pada baris ke –i dan kolom ke-j dari matrisk A itu dihapuskan, maka diperoleh matriks berordo 2 x 2.

Determinan dari matriks persegi berordo 2 x 2 yang diperoleh itu dinamakan minor dari matriks A, dilambangkan dengan |Mij| Minor dari determinan matriks A disebut sebagai minor aij. Contoh: Diketahui matriks A = Tentukanlah minor-minor dari matriks A.

Jawab:

b. Pengertian Kofaktor Jika |Mij| adalah minor dari aij dari matriks A, maka bentuk (-1)i+j |Mij| disebut kofaktor dari aij. Kofaktor dari aij dilambangkan dengan α ij. Jadi kofaktor aij dapat ditentukan dengan rumus αij = (-1)i+j |Mij|

Contoh: Kofaktor dari a11 adalah α11= (-1)1+1 |M11|= + |M11|

c. Pengertian Adjoin Matriks berordo 3 x3 Matriks A adalah matriks persegi berordo 3 x 3 dalam bentuk: Yang dimaksud dengan adjoin matriks A (disingkat: adj A) adalah juga suatu matriks yang ditentukan dalam bentuk: adj A = Dengan αij adalah kofaktor dari aij

d. Invers matriks berorodo 3 x 3 Misalkan matriks A adalah matriks berorodo 3 x 3. Invers dari matriks A dirumuskan dengan aturan:

Contoh: Tentukanlah invers matriks berikut. Jawab: Jadi matriks A mempunyai invers

Kofaktor-kofaktor dari matriks A adalah: Determinan menggunakan ekpansi Laplace : Det(A) = a11 c11 – a12 c12 + a13 c13 = 1 (-2) – 2( 1) + 1(3) = -1

Matriks adjoinnya: Adj A= = A-1 = 1/det A. adj A = 1/-1 =

Penyelesaian persamaan matriks. Misalkan A, B, dan X adalah matriks-matriks persegi berordo 2 x 2 atau 3 x 3, dan A adalah matriks yang tak singular yang mempunyai invers, yaitu A-1, maka: Penyelesaian persamaan matriks A.X = B ditentukan oleh X = A-1. B Penyelesaian persamaan matriks X.A = B, ditentukan oleh: X = B.A-1

Contoh 1: Tentukanlah penyelesaian SPLDV dibawah ini dengan menggunakan metode invers matriks. 4x + 5y = 17 2x + 3y = 11 Jawab: Langka awal untuk menyelesaikan bentuk persamaan diatas dengan metode invers matriks adalah dengan mengubah persamaan dalam bentuk persamaan matriks.

Langkah 2: Langkah 3: Langkah 4: X = -2 dan y = 5

Contoh 2: Tiga arus i1, i2, i3 dalam suatu jaringan berhubungan melalui persamaan berikut: 2 i1 + i2 – i3 = 13 - i1 + 2 i2 + 3i3 = -9 4 i1 - i2 + 2i3 = 8 Dengan menggunakan metode invers matriks tentukanlah penyelesaian persamaan diatas.

Jawab: Langkah 1: Mengubah persamaan dalam bentuk matriks

Kofaktor- kofaktor dari matriks A

Matriks adjoin : I = A-1 . B I = 1/det A . Adj A . B

Chapter 5 Invers Matriks