SOLUSI OPTIMUM Setelah solusi layak dasar diperoleh, kemudian dilakukan perbaikan untuk mencapai solusi opti- mum. Dua metode mencari solusi optimum ada- lah Metode Batu Loncat (Stepping-Stone) dan Metode Modi (Modified Distribution). (1). Metode Batu Loncat (Stepping-Stone) Setelah solusi layak dasar awal diperoleh dari masalah transportasi, langkah berikutnya adalah menekan ke bawah biaya transportasi dengan
memasukkan variabel non basis (alokasi barang ke kotak kosong) ke dalam solusi. Proses eva- luasi variabel non basis yang memungkinkan terjadinya perbaikan solusi dan kemudian meng- alokasikan kembali. Dengan menggunakan solusi awal yg diperoleh melalui Metode Pojok Barat Laut yang belum optimum akan dievaluasi masing-masing varia- bel non basis melalui Metode Stepping-Stone. Variabel non basis (kotak kosong) adalah X12, X13, X23, X31.
--------------------------------------------------------------------- Pabrik Pasar Penawaran 1 2 3 -------------------------------------------------------------------- 8 5 6 1 X12 X13 120 15 10 12 2 X23 80 3 9 10 3 X31 80 Permintaan 150 70 60 280 120 30 50 20 60
Beberapa hal penting dalam penyusunan jalur batu loncat (stepping-stone) : (1). Arah yg diambil, baik searah maupun ber- lawanan arah dengan jarum jam adalah tdk penting dlm membuat jalur tertutup. (2). Hanya ada satu jalur tertutup untuk setiap kotak kosong. (3). Jalur harus hanya mengikuti kotak terisi, kecuali pada kotak kosong yg sedang di evaluasi. (4). Kotak kosong maupun kotak isi dapat dile- wati dlm penyusunan jalur tertutup.
(5). Suatu jalur dapat melintasi dirinya. (6). Sebuah penambahan dan sebuah pengurang an yg sama besar hrs kelihatan pada setiap baris dan kolom pada jalur itu. ------------------------------------------------------------------------ Kotak Kosong Jalur Tertutup X12 X12 X22 X21 X11 X12 X13 X13 X33 X32 X22 X21 X11 X13 X23 X23 X33 X32 X22 X23 X31 X31 X21 X22 X32 X31
Dari analisis biaya semua var non basis, hanya ------------------------------------------------------------------------- Cij Jalur Penambahan dan Pengurangan Biaya Perubahan Biaya X12 5-10+15-8 2 X13 6-10+9-10+15-8 2 X23 12-10+9-10 1 X31 3-15+10-9 -11 Dari analisis biaya semua var non basis, hanya X31 yg memiliki perubahan biaya negatif (C31= -11), sehingga X31 adalah satu-satunya variabel non basis dimasukkan ke solusi yg akan menu- runkan biaya.
--------------------------------------------------------------------- Pabrik Pasar Penawaran 1 2 3 -------------------------------------------------------------------- 8 5 6 1 X12 X13 120 15 10 12 2 X23 80 - + 3 9 10 3 + X31 - 80 Permintaan 150 70 60 280 120 30 50 20 60
--------------------------------------------------------------------- Pabrik Pasar Penawaran 1 2 3 -------------------------------------------------------------------- 8 5 6 1 X12 X13 120 15 10 12 2 X23 80 3 9 10 3 80 Permintaan 150 70 60 280 120 10 70 20 60
------------------------------------------------------------------------ Kotak Kosong Jalur Tertutup X23 X23 X33 X31 X21 X23 ------------------------------------------------------------------------- Cij Jalur Penambahan dan Pengurangan Biaya Perubahan Biaya X23 12-10+3-15 -10
--------------------------------------------------------------------- Pabrik Pasar Penawaran 1 2 3 -------------------------------------------------------------------- 8 5 6 1 X12 X13 120 15 10 12 2 80 3 9 10 3 80 Permintaan 150 70 60 280 120 70 10 30 50
--------------------------------------------------------------------- Pabrik Pasar Penawaran 1 2 3 -------------------------------------------------------------------- 8 5 6 1 120 15 10 12 2 80 3 9 10 3 80 Permintaan 150 70 60 280 70 50 70 10 80
Jadi Total Biaya Transportasi minimum yg telah diperbaiki dengan Metode Batu Loncat (Stepping Stone) adalah = 70(8)+50(6)+70(10)+10(12)+ 80(3) = 560+300+700+120+240 = 1920.-
Latihan 1
Latihan 2
Latihan 3