Luas daerah yang dibatasi oleh kurva y = f(x)  0, sumbu x, garis x = a dan garis x = b dirumuskan: Diatas Sumbu X (+)

Slides:



Advertisements
Presentasi serupa
Matematika SMK INTEGRAL Kelas/Semester: III/5 Persiapan Ujian Nasional.
Advertisements

APLIKASI INTEGRAL.
Penggunaan Integral Tentu
Oleh : Novita Cahya Mahendra
Bilangan Real ® Bil. Rasional (Q)
Konsep jumlah rieman Oleh : Triyanti Nim :
MEDIA PRESENTASI PEMBELAJARAN
PENGGUNAAN INTEGRAL Menghitung luas suatu daerah yang dibatasi oleh kurva dan sumbu-sumbu koordinat. Menghitung volume benda putar. 9 Luas daerah di bawah.
Oleh: Sudaryatno Sudirham
Multipel Integral Integral Lipat Dua
7. APLIKASI INTEGRAL MA1114 KALKULUS I.
KONSEP, SIFAT DAN ATURAN Bagian 1
Bab 1 INTEGRAL.
INTEGRAL Asep Saeful ulum Feri Ferdiansyah Hilman Nuha Ramadhan
Adam Vrileuis, dimas h. marutha, dimas p.
Selamat Datang & Selamat Memahami
Aplikasi integral tentu
HITUNG INTEGRAL INTEGRAL TAK TENTU.
MODUL VI : PENERAPAN INTEGRAL
PENGGUNAAN INTEGRAL TERTENTU
INTEGRAL LIPAT TIGA TIM KALKULUS II.
PLPG MATEMATIKA GELOMBANG V TAHUN 2011
“ Integral ” Media Pembelajaran Matematika Berbasis
Bab V INTEGRAL TERTENTU
KALKULUS II By DIEN NOVITA.
Koordinat Kartesius, Koordinat Tabung & Koordinat Bola
TRANSFORMASI KOORDINAT & PERUBAHAN VARIABEL PADA INTEGRAL LIPAT
MENGUKUR VOLUME TABUNG
INTEGRAL TENTU DAN PENERAPANNYA
Persamaan Kuadrat jika diketahui grafik fungsi kuadrat
Terapan Integral Lipat Dua
Volume Benda Putar Materi Luas Daerah & Volume Benda Putar bisa di download dari PR selama liburan: Dengan Integral, buktikan.
HITUNG INTEGRAL INTEGRAL TAK TENTU.
KALKULUS 2 JURUSAN TEKNOLOGI INFORMASI FAKULTAS TEKNIK UNIVERSITAS TADULAKO PROGRAM STUDI S1 TEKNIK INFORMATIKA.
PENERAPAN INTEGRAL Menghitung luas suatu daerah yang dibatasi oleh kurva dan sumbu-sumbu koordinat.
7.2.2 Metoda Cincin a. Daerah diputar terhadap sumbu x Daerah D
Penerapan Integral Tertentu
6. INTEGRAL.
KALKULUS 2 INTEGRAL.
APLIKASI INTEGRAL TENTU.
INTEGRAL TENTU DAN PENERAPANNYA
INTEGRAL Aplikasi Bahan Ajar Matematika Kelas XII SMA
UNIVERSITAS MUHAMMADIYAH SUKABUMI
Matakuliah : R0262/Matematika Tahun : September 2005 Versi : 1/1
3. 3 Materi Pokok 1. Luas Daerah 2. Volume Benda Putar.
INTEGRAL TENTU DAN PENERAPAN
INTEGRAL TENTU DAN PENERAPAN
BAB 2 INTEGRAL LIPAT.
LINGKARAN DALAM DAN LINGKARAN LUAR SEGITIGA
MEDIA PRESENTASI PEMBELAJARAN
Matakuliah : R0262/Matematika Tahun : September 2005 Versi : 1/1
KALKULUS 2 INTEGRAL.
Integral Lipat Dua
Regula Falsi.
Integral.
MEDIA PRESENTASI PEMBELAJARAN
Fungsi Kuadrat HOME NEXT PREV a. Persamaan grafik fungsi kuadrat
Grafik Fungsi Aljabar next
15 Kalkulus Yulius Eka Agung Seputra,ST,MSi. FASILKOM
Menghitung luas suatu daerah yang dibatasi oleh kurva
Menentukan Batas Integral Lipat Dua:
BANGUN DATAR LINGKARAN
MATEMATIKA 2.
Peta Konsep. Peta Konsep E. Merumuskan dan Menghitung Volume Benda Putar.
Peta Konsep. Peta Konsep E. Merumuskan dan Menghitung Volume Benda Putar.
Peta Konsep. Peta Konsep D. Merumuskan dan Menghitung Luas Suatu Daerah.
UNIVERSITAS MUHAMMADIYAH SUKABUMI
INTEGRAL TENTU DAN PENERAPAN
7. APLIKASI INTEGRAL.
Sudiarto, SMK Negeri 5 Jember, 2013/2014 INTEGRAL Disusun oleh: Sudiarto, S.Pd, M.Pd NIP SMK NEGERI 5 JEMBER MULAI y a x 0 b.
Transcript presentasi:

Luas daerah yang dibatasi oleh kurva y = f(x)  0, sumbu x, garis x = a dan garis x = b dirumuskan: Diatas Sumbu X (+)

Luas daerah yang dibatasi oleh kurva y = f(x)  0, sumbu x, garis x = a dan garis x = b dirumuskan: Dibawah Sumbu X

Luas daerah yang dibatasi oleh kurva y = f(x), sumbu x, garis x = a dan garis x = c dirumuskan: Bagaimana Luas daerah gambar dibawah?

Luas daerah yang dibatasi oleh kurva y = f(x) dan y= g(x), garis x = a dan garis x = b dirumuskan:

Hal.: 6 Integral Hitunglah luas daerah tertutup yang dibatasi kurva y = x 2 dan garis y = 2 - x Contoh 5. Langkah penyelesaian: 1.Gambar daerahnya 2.Tentukan titik potong kedua kurva x 2 = 2 – x  x 2 + x – 2 = 0  (x + 2)(x – 1) = 0 diperoleh x = -2 dan x = 1 3.Partisi daerahnya 4.Aproksimasi luasnya L i  (2 - x - x 2 )  x 4. Jumlahkan luasnya L   (2 - x - x 2 )  x 5. Tentukan limit jumlah luasnya L = lim  (2 - x - x 2 )  x 6.Nyatakan dalam integral tertentu 0 x y LiLi xx x Jawab Next Back Home Menghitung Luas dengan Integral Luas Daerah

Hal.: 7 Integral 0 x y LiLi xx x Next Back Home Menghitung Luas dengan Integral

Hal.: 8 Integral Untuk kasus tertentu pemartisian secara vertikal menyebabkan ada dua bentuk integral. Akibatnya diperlukan waktu lebih lama untuk menghitungnya. y a b LiLi xx xx AiAi 0 x Luas daerah = Next Back Home Menghitung Luas dengan Integral

Hal.: 9 Integral Jika daerah tersebut dipartisi secara horisontal, maka akan diperoleh satu bentuk integral yang menyatakan luas daerah tersebut. Sehingga penyelesaiannya menjadi lebih sederhana dari sebelumnya. y 0 x Luas daerah = LiLi yy c d Next Back Home Menghitung Luas dengan Integral

Hal.: 10 Integral Hitunglah luas daerah yang dibatasi kurva y 2 = x, garis x + y = 6, dan sumbu x Contoh 6. Langkah penyelesaian: 1.Gambar daerahnya 2.Tentukan titik potong kedua kurva y 2 = 6 – y  y 2 + y – 6 = 0  (y + 3)(y – 2) = 0 diperoleh y = - 3 dan y = 2 3.Partisi daerahnya 4.Aproksimasi luasnya L i  (6 - y - y 2 )  y 4. Jumlahkan luasnya L   (6 - y - y 2 )  y 5. Tentukan limitnya L = lim  (6 - y - y 2 )  y 6.Nyatakan dalam integral tertentu Luas daerah = 2 y 6 x 0 6 LiLi yy y Jawab Next Back Home Menghitung Luas dengan Integral

Hal.: 11 Integral Luas daerah = 2 y 6 x 0 6 LiLi yy y Home Back Next Menghitung Luas dengan Integral

Hal.: 12 Integral Suatu daerah jika di putar mengelilingi garis tertentu sejauh 360º, maka akan terbentuk suatu benda putar. Kegiatan pokok dalam menghitung volume benda putar dengan integral adalah: partisi, aproksimasi, penjumlahan, pengambilan limit, dan menyatakan dalam integral tentu. Gb. 4 Home Next Back Volume Benda Putar

Hal.: 13 Integral Dalam menentukan volume benda putar yang harus diperhatikan adalah bagaimana bentuk sebuah partisi jika diputar. Berdasarkan bentuk partisi tersebut, maka metode yang digunakan untuk menentukan volume benda putar dibagi menjadi : 1. Metode cakram 2. Metode cincin 3. Metode kulit tabung y 0 x y x 0 x y Next Back Home Volume Benda Putar

Hal.: 14 Integral Metode cakram yang digunakan dalam menentukan volume benda putar dapat dianalogikan seperti menentukan volume mentimun dengan memotong-motongnya sehingga tiap potongan berbentuk cakram. Next Back Home Volume Benda Putar Metode Cakram

Hal.: 15 Integral Bentuk cakram di samping dapat dianggap sebagai tabung dengan jari-jari r = f(x), tinggi h =  x. Sehingga volumenya dapat diaproksimasi sebagai  V   r 2 h atau  V   f(x) 2  x. Dengan cara jumlahkan, ambil limitnya, dan nyatakan dalam integral diperoleh: V    f(x) 2  x V = lim   f(x) 2  x xx h=  x x x y 0 x y x a Next Back Home Volume Benda Putar Metode Cakram

Hal.: 16 Integral Hitunglah volume benda putar yang terjadi jika daerah yang dibatasi kurva y = x 2 + 1, sumbu x, sumbu y, garis x = 2 diputar mengelilingi sumbu x sejauh 360º. Contoh 7. Langkah penyelesaian: 1.Gambarlah daerahnya 2.Buat sebuah partisi 3.Tentukan ukuran dan bentuk partisi 4.Aproksimasi volume partisi yang diputar, jumlahkan, ambil limitnya, dan nyatakan dalam bentuk integral. y 2 x xx 1 y h=  x x x x Jawab Next Back Home Volume Benda Putar Metode Cakram

Hal.: 17 Integral y h=  x x x  V   r 2 h  V   (x 2 + 1) 2  x V    (x 2 + 1) 2  x V = lim   (x 2 + 1) 2  x Next Back Home Volume Benda Putar Metode Cakram

Hal.: 18 Integral Hitunglah volume benda putar yang terjadi jika daerah yang dibatasi kurva y = x 2, sumbu y, garis y = 2 diputar mengelilingi sumbu y sejauh 360º. Contoh 8. Langkah penyelesaian: 1.Gambarlah daerahnya 2.Buatlah sebuah partisi 3.Tentukan ukuran dan bentuk partisi 4.Aproksimasi volume partisi yang diputar, jumlahkan, ambil limitnya, dan nyatakan dalam bentuk integral. 2 y yy x y x y h=yh=y y Jawab Next Back Home Volume Benda Putar Metode Cakram

Hal.: 19 Integral  V   r 2 h  V   (  y) 2  y V    y  y V = lim   y  y x y h=yh=y y 2 Next Back Home Volume Benda Putar Metode Cakram

Hal.: 20 Integral Metode cincin yang digunakan dalam menentukan volume benda putar dapat dianalogikan seperti menentukan volume bawang bombay dengan memotong-motongnya yang potongannya berbentuk cincin. Next Back Home Volume Benda Putar Metode Cincin

Hal.: 21 Integral Menghitung volume benda putar dengan menggunakan metode cincin dilakukan dengan memanfaatkan rumus volume cincin seperti gambar di samping, yaitu V=  (R 2 – r 2 )h h r R Gb. 5 Next Back Home Volume Benda Putar Metode Cincin

Hal.: 22 Integral Hitunglah volume benda putar yang terjadi jika daerah yang dibatasi kurva y = x 2 dan garis y = 2x diputar mengelilingi sumbu x sejauh 360º. Contoh 9. Langkah penyelesaian: 1.Gambarlah daerahnya 2.Buat sebuah partisi 3.Tentukan ukuran dan bentuk partisi 4.Aproksimasi volume partisi yang diputar, jumlahkan, ambil limitnya, dan nyatakan dalam bentuk integral. 4 y y = 2x 2 x xx x x2x2 2x2x y x Jawab Next Back Home Volume Benda Putar Metode Cincin

Hal.: 23 Integral y x 4 y y = 2x 2 x xx x r=x 2 R=2x  V   (R 2 – r 2 ) h  V   [ (2x) 2 – (x 2 ) 2 ]  x  V   (4x 2 – x 4 )  x V    (4x 2 – x 4 )  x V = lim   (4x 2 – x 4 )  x Next Back Home Volume Benda Putar Metode Cincin

Hal.: 24 Integral Metode kulit tabung yang digunakan untuk menentukan volume benda putar dapat dianalogikan seperti menentukan volume roti pada gambar disamping. Next Back Home Volume Benda Putar Metode Kulit Tabung

Hal.: 25 Integral rr r h h 2r2r ΔrΔr V = 2  rh Δ r Next Back Home Volume Benda Putar Metode Kulit Tabung

Hal.: 26 Integral Hitunglah volume benda putar yang terjadi jika daerah yang dibatasi kurva y = x 2, garis x = 2, dan sumbu x diputar mengelilingi sumbu y sejauh 360º. Contoh 10. Langkah penyelesaian: 1.Gambarlah daerahnya 2.Buatlah sebuah partisi 3.Tentukan ukuran dan bentuk partisi. 4.Aproksimasi volume partisi yang diputar, jumlahkan, ambil limitnya, dan nyatakan dalam bentuk integral. 0 x 12 x xx x2x2 y Jawab Next Back Home Volume Benda Putar Metode Kulit Tabung

Hal.: 27 Integral 0 x 12 x xx x2x2 y r = x xx h = x 2 0 x y  V  2  rh  x  V  2  (x)(x 2 )  x V   2  x 3  x V = lim  2  x 3  x Next Back Home Volume Benda Putar Metode Kulit Tabung

Hal.: 28 Integral Jika daerah pada contoh ke-10 tersebut dipartisi secara horisontal dan sebuah partisi diputar mengelilingi sumbu y, maka partisi tersebut membentuk cincin. Volume benda putar tersebut dihitung dengan metode cincin adalah sebagai berikut. 0 x y  V   (R 2 – r 2 )  y  V   (4 - x 2 )  y V    (4 – y)  y V = lim   (4 – y)  y 0 x 12 x y yy r=x R = 2 Home Back Next Volume Benda Putar Metode Kulit Tabung