6. PENCOCOKAN KURVA (CURVE FITTING)
6.1.3 Metode Newton-Gregory Jika titik-titik pada data mempunyai jarak yang sama maka rumus interpolasi Newton dapat disederhanakan karena tidak ada proses pembagian, sehingga tabel pada metode interpolasi Newton-Georgory disebut tabel selisih saja; bukan tabel selisih-terbagi. Ada 2 jenis metode Interpolasi Newton-Gregory yaitu metode selisih maju dan selisih mundur. a) Metode Selisih Maju Polinom selisih maju dibangun berdasarkan tabel selisih maju. Jika terdapat k buah titik, maka terdapat (k – 1) besaran selisih maju, yaitu selisih maju pertama sampai ke (k – 1). Berikut diberikan contoh tabel selisih maju untuk 5 buah titik.
Tabel Selisih-Maju x f(x) f 2f 3f 4f x0 x1 x2 x3 x4 f0 f1 f2 f3 f4 f0 f1 f2 f3 2f0 2f1 2f2 3f0 3f1 4f0 adalah lambang selisih maju f0 = f(x0), f1 = f(x1), f2 = f(x2), …, fk = f(xk). f0 = f1 – f0, f1 = f2 – f1, …, fk = fk+1 – fk. 2f0 = f1 – f0, 2f1 = f2 – f1 , …, 2fk = fk+1 – fk Bentuk umum nfk = n–1fk+1 – n–1 fk (6.17)
Dari metode selisih-terbagi Newton diketahui bahwa jika sebuah tabel mempunyai jarak yang sama, misal h, maka titik-titik pada tabel tersebut dapat ditulis x0, x1 = x0+ h, x2 = x0 + 2h, …, xn = x0 + nh (6.18) Dari rumus selisih terbagi pada pers. (6.10) s.d. (6.12), serta persamaan (6.17) dan (6.18) didapat rumus selisih, (6.19) (6.20)
Dari persamaan (6.19) dan (6.20) didapat rumus umum selisih menjadi (6.21) Substitusi persamaan (6.19) s.d. (6.21) ke persamaan (6.13) didapat, (6.22) Karena titik-titik data mempunyai jarak yang sama, maka xi = x0 + ih , i = 0, 1, 2,… , n dan nilai x yang diinterpolasikan x = x0 + sh, sR (6.23)
Jika xi dan nilai x yang diinterpolasikan disubstitusi ke persamaan (6 Jika xi dan nilai x yang diinterpolasikan disubstitusi ke persamaan (6.22), didapat (6.24) Persamaan (6.24) dapat ditulis menjadi bentuk rekursif, (6.25)
Contoh 6.5 Sebuah tabel yang berasal dari fungsi f(x) = 1/(1+2x2) mempunyai jarak antar titik h = 0,20. Bentuk tabel selisih maju derajat 3 dan hitung f(0,72) Penyelesaian x f(x) 0.00 1.000 0.20 0.926 0.40 0.758 0.60 0.581 0.80 0.439 1.00 0.333 1.20 0.258 Karena tabel selisih maju derajat 3 dan titik x = 0,62 terletak diantara titik x = 0,60 dan x = 0,80, maka titik-titik yang diambil adalah x0 = 0,40, x1 = 0,60, x2 = 0,80, x3 = 1,00 Dari persamaan (6.23) didapat s = (x – x0)/h = (0,72 – 0,40)/0,20 = 1,60
Tabel Selisih Maju x f(x) f 2f 3f 0,40 0,60 0,80 1,00 0,758 0,581 0,439 0,333 –0,177 –0,142 –0,106 0,035 0,036 0,001 Dari persaman (6.24)
Taksiran galat interpolasi selisih-maju Taksiran galat interpolasi selisih maju E(x) adalah (6.26) atau (6.27) dengan s = (x – x0)/h
Contoh 6.6 Tentukan taksiran galat interpolasi dari contoh 6.5 x f(x) 0.00 1.000 0.20 0.926 0.40 0.758 0.60 0.581 0.80 0.439 1.00 0.333 1.20 0.258 Dari persamaan 6.27 taksiran galat s = 1,60 dan n = 3 (lihat contoh 6.5)
Tabel Selisih Maju x f(x) f 2f 3f 4f 0,40 0,60 0,80 1,00 1,20 0,758 0,581 0,439 0,333 0,258 –0,177 –0,142 –0,106 –0,075 0,035 0,036 0,031 0,001 –0,005 –0,006 s = (x – x0)/h = (0,72 – 0,40)/0,20 = 1,60
b) Metode Selisih Mundur (Backward Difference) Polinom selisih mundur dibangun berdasarkan tabel selisih mundur. Berikut diberikan contoh tabel selisih mundur untuk 5 buah titik. Tabel Selisih Mundur x f(x) f 2f 3f 4f x-4 x-3 x-2 x-1 x0 f-4 f-3 f-2 f-1 f0 f-3 f-2 f-1 f0 2f-2 2f-1 2f0 3f-1 3f0 4f0
adalah lambang selisih mundur f0 = f(x0), f-1 = f(x-1), f-2 = f(x-2), …, f-k = f(x-k). f0 = f0 – f-1, f-1 = f-1 – f-2, …, f-k = f-k – f-k-1. 2f0 = f0 – f-1 , 2f-1 = f-1 – f-2, …,2f-k = f-k – f-k-1 Bentuk umum n fk = n–1fk – n–1 fk-1 (6.28) Polinom Selisih-Mundur yang menginterpolasi (n+1) adalah (6.28)
Contoh 6.7 Dari tabel berikut, hitung f(1,83) dengan metode a) Selisih maju derajat 3 b) Selisih mundur derajat 3 i x f(x) 1.70 0,39798 1 1,80 0,33998 2 1,90 0.28182 3 2,00 0,22389 4 2,10 0,18753 Penyelesaian
a) Selisih maju derajat 3 x f(x) f 2f 3f 1 2 3 1,70 1,80 1,90 2,00 0,39798 0,33998 0,28182 0,22389 –0,05800 –0,05816 –0,05793 –0,00016 0,00023 0,00039 s = (x – x0)/h = (1,83 – 1,70)/0,10 = 1,30
= 0,39798 – 0,0754 – 0,0000312 – 0,000017745 = 0,32253
b) Selisih mundur derajat 3 i x f(x) f 2f 3f 0,39798 0,33998 –3 –2 –1 1,70 1,80 1,90 2,00 0,39798 0,33998 0,28182 0,22389 –0,05800 –0,05816 –0,05793 –0,00016 0,00023 0,00039 s = (x – x0)/h = (1,83 – 2,00)/0,10 = –1,70
= 0,22389 + 0,098481 + 0,00013685 + 0,000023205 = 0,32253
Latihan Dari tabel berikut, hitung p3(0,58) dengan metode selisih maju x f(x) 0,10 0,003 0,30 0,067 0,50 0,148 0,70 0,248 0,90 0,370 1,10 0,518 1,30 0,697