TURUNAN PARSIAL MATERI KALKULUS I
Turunan Parsial Misalkan z = f(x,y) fungsi 2 variabel yg terdefinisi disekitar titik (x,y). Turunan parsial dari f terhadap x adalah turunan z terhdp x dimana hanya variabel x saja yg diasumsikan berubah, dan y tetap konstan. Mengukur kecepatan perubahan z thdp x sementara y konstan. Turunan parsial z = f(x,y) terhdp x ditulis didefinisikan sbb.
Turunan parsial z = f(x,y) terhdp y ditulis didefinisikan sbb. Contoh:
adalah turunan fungsi f(x,y) terhadap x dengan memperlakukan y sebagai suatu tetapan, yang disebut turunan parsial fungsi f(x,y) terhadap x adalah turunan fungsi f(x,y) terhadap x dengan memperlakukan y sebagai suatu tetapan, yang disebut turunan parsial fungsi f(x,y) terhadap y Lambang lain = fx (x,y) (1.a) = fy (x,y) (1.b)
Turunan parsial (1a) dan (1b) umumnya juga merupakan fungsi dari x dan y, maka jika diturunkan lebih lanjut, disebut turunan parsial kedua.
Contoh Misalkan f(x,y)=xy2 – sin (xy). Maka ..,
SOAL LATIHAN Tentukan turunan parsial fungsi-fungsi di bawah ini:
Differensial Total
Contoh : Hitunglah diferensial total fungsi pada f(x,y)=xy2 – sin (xy). Jawab. fx = y2 – y cos (xy) dan fy = 2xy - x cos (xy) Sehingga turunan totalnya : df = (y2 – y cos (xy) )dx + (2xy - x cos (xy)dy
Aturan Rantai Misalkan x = g(t) dan y = h(t) fungsi terdeferensial, terdefinisi di t dan misalkan z = f(x,y) mempunyai turunan parsial orde-satu yg kontinu. Maka z = f(x(t), y(t)) terdefinisi di t dan terdeferensial Contoh:
Mis. Z = f(u, v, x, y) dimana u dan v masing2 fungsi dari x dan y Mis. Z = f(u, v, x, y) dimana u dan v masing2 fungsi dari x dan y. Disini x dan y sebagai variabel antara dan variabel bebas. Aturan rantai menghasilkan: