Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

PENERAPAN BILANGAN BULAT DAN PECAHAN BILANGAN BULAT.

Presentasi serupa


Presentasi berjudul: "PENERAPAN BILANGAN BULAT DAN PECAHAN BILANGAN BULAT."— Transcript presentasi:

1

2 PENERAPAN BILANGAN BULAT DAN PECAHAN

3 BILANGAN BULAT

4 Contoh 1: Suhu mula-mula kota A 10 0 C, karena cuaca hujan suhu di kota A turun 12 0 C, tentukan suhu kota saat hujan?

5 Penyelesaian: Suhu mula-mula = 10 0 C Penurunan suhu = 12 0 C Suhu saat hujan = 10 0 C C = -2 0 C Jadi suhu kota A saat hujan adalah 2 0 C

6 Contoh 2: Ketinggian kota A = 200 meter diatas permukaan laut, kota B 125 meter dibawah kota A, tentukan ketinggian kota B!

7 Penyelesaian: Ketinggian kota A= 200 meter Ketinggian kota B = 125 meter dibawah kota A. Ketinggian kota B = 200 m – 125m = 75 meter Jadi, ketinggian kota B = 75 meter.

8 Contoh 3: Di sebuah rumah makan terdapat dua buah lemari es. Lemari es pertama suhunya adalah -5 0 C, sedangkan lemari es kedua suhunya -3 0 C. Tentukan perbedaan suhu kedua lemari es tersebut.

9 Penyelesaian: Suhu lemari es A = -5 0 C Suhu lemari es B = -3 0 C Perbedaan suhu = -5 – (-3) = = - 2 Jadi, perbedaan suhunya =2 0 C

10 Dalam suatu tes d itetapkan bahwa setiap jawaban benar mendapat nilai 4, jawaban salah mendapat nilai -1 dan jawaban kosong mendapat nilai 0, Jika Andi berhasil menjawab 70 soal dengan benar dan 30 soal salah dari seluruh soal yang berjumlah 100, maka berapakah nilai Andi? Contoh 4:

11 Penyelesaian: Jawaban benar = 70 Jawaban salah = 30 Jawaban kosong = 0 Nilai Andi = 70(4) + 30(-1) = 280 – 30 = 250 Jadi, nilai Andi = 250

12 BILANGAN PECAHAN Bentuk pecahan 1.Pecahan campuran 2.Pecahan Desimal 3.Persen Bentuk pecahan 1.Pecahan campuran 2.Pecahan Desimal 3.Persen

13 PECAHAN CAMPURAN Pecahan campuran adalah bentuk pecahan yang terdiri dari bilangan bulat dan pecahan biasa. Contoh: a. b. Pecahan campuran adalah bentuk pecahan yang terdiri dari bilangan bulat dan pecahan biasa. Contoh: a. b.

14 PECAHAN DESIMAL Pecahan biasa dapat diubah dalam bentuk pecahan desimal dengan mengubah ke bentuk pecahan yang memiliki penyebut bilangan kelipatan 10. Contoh: a. b. Pecahan biasa dapat diubah dalam bentuk pecahan desimal dengan mengubah ke bentuk pecahan yang memiliki penyebut bilangan kelipatan 10. Contoh: a. b.

15 PERSEN Pecahan biasa dapat diubah dalam bentuk persen dengan mengubah ke bentuk pecahan yang memiliki penyebut bilangan 100. Contoh: a. = 80% b. = 50% Pecahan biasa dapat diubah dalam bentuk persen dengan mengubah ke bentuk pecahan yang memiliki penyebut bilangan 100. Contoh: a. = 80% b. = 50%

16

17 Soal 1: Jumlah tiga bilangan bulat berurutan adalah 69. tentukan hasil kali ketiga bilangan tersebut.

18 Penyelesaian: Tiga bilangan = 69 Rata-rata = 69 : 3 = 23 Jadi bilangan tersebut : 22, 23, 24 Hasil kali = 22 x 23 x 24 =

19 Soal 2: Perbandingan umur ayah dengan umur kakak adalah 7:2. Jika jumlah umur mereka adalah 63, tentukanlah: a.umur ayah b.Selisih umur ayah dan umur kakak

20 Penyelesaian: Jumlah perbandingan = = 9 Jumlah umur ayah+kakak = 63 thn Umur Ayah = x 63 = 43 thn Umur Kakak = 63 – 43 = 20 thn. Selisih umur = 43 – 20 = 23 thn.

21 IIbu memberi uang kepada Tika Rp 5.000,- dan Tika membelanja kan uang tersebut Rp 600,- tiap hari. Jika sekarang sisa uangnya Rp 200,- maka Tika telah membelanja kan uangnya selama berapa hari?

22 Jumlah uang = Rp 5.000,00 Sisa uang = Rp 200,00 Yang dibelanjakan = Rp 4.800,00 Belanja tiap hari = Rp 600,00 Lamanya Tika membelanjakan uang : = Rp 4.800,00 : Rp 600,00 = 8 hari

23 Suhu dipuncak gunung -15 o C dan suhu dikota A 32 o C. Tentukan perbedaan suhu kedua tempat itu!

24 Suhu di gunung = C Suhu di Kota = 32 0 C Perbedaan suhu : = 5 0 C C = 47 0 C

25 Tiga orang yaitu A, B, dan C melakukan jaga (piket) secara berkala. A tiap 3 hari sekali, B tiap 4 hari sekali, dan C tiap 5 hari sekali. Pada hari Selasa 2 November 2004 mereka berjaga bersama. Kapankah mereka akan tugas bersamaan lagi pada kesempatan berikutnya?

26 Tugas I bersama  tanggal, 2 Nop 2007 KPK dari 3, 4 dan 5 = 60 hari Tugas II bersama  60 hari kemudian. Jadi 60 hari setelah 2 Nopember 2007 adalah tanggal 1 Januari 2008.

27 FPB dari 18 x 2 y 5 z 3 dan 24 x 3 y 2 z 5 adalah… a. 18 x 3 y 5 z 5 b. 18 x 2 y 2 z 3 c. 6 x 3 y 5 z 5 d. 6 x 2 y 2 z 3

28 FPB dari 18 x 2 y 5 z 3 dan 24 x 3 y 2 z 5 FPB 18 dan 24 = 6 FPB x 2 dan x 3 = x 2 FPB y 5 dan y 2 = y 2 FPB z 3 dan z 5 = z 3 Maka FPB = 6 x 2 y 2 z 3

29 Dari 20 siswa yang mengikuti lomba Matematika, 5 orang berhak maju ke babak final dan 3 orang berhasil menjadi juara. Persentase siswa yang menjadi juara adalah... a. 3% b. 6% c. 15% d. 30%

30 Jumlah peserta = 20 orang Peserta yang juara = 3 orang Persentase Juara adalah : = 3 / 20 x 100% = 15%

31 Dalam ruang perpustakaan terdapat 40 siswa, 20 siswa membaca puisi, 15 siswa membaca novel, sedangkan sisanya membaca surat kabar, persentase siswa yang senang membaca koran adalah... a. 50% c. 12,5% b. 37,5 % d. 5%

32 Baca surat kabar = 40 – ( ) = 5 siswa. Persentase SK = 5 / 40 x 100% = 12,5%

33


Download ppt "PENERAPAN BILANGAN BULAT DAN PECAHAN BILANGAN BULAT."

Presentasi serupa


Iklan oleh Google