Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

Ekonometrika Program Studi Statistika Semester Ganjil 2011 DR. Rahma Fitriani, S.Si., M.Sc.

Presentasi serupa


Presentasi berjudul: "Ekonometrika Program Studi Statistika Semester Ganjil 2011 DR. Rahma Fitriani, S.Si., M.Sc."— Transcript presentasi:

1 Ekonometrika Program Studi Statistika Semester Ganjil 2011 DR. Rahma Fitriani, S.Si., M.Sc

2 Regresi Linier Berganda  Satu peubah respon (endogen)  Beberapa peubah penjelas (eksogen)  Dinotasikan dalam matriks

3 Penduga OLS  Penduga yang meminimumkan Jumlah kuadrat galat (RSS), dalam notasi matriks:

4 Penduga OLS  RSS akan minimum pada nilai penduga yang merupakan solusi dari turunan pertama RSS yang disamadengankan nol PENDUGA OLS

5 Asumsi-asumsi pada regresi linier berganda DR. Rahma Fitriani, S.Si., M.Sc  Sama dengan semua asumsi pada regresi linier sederhana, dengan tambahan:  Tidak ada hubungan linier sempurna di antara dua atau lebih peubah penjelas (eksogen)  Dengan terpenuhinya asumsi maka penduga OLS akan bersifat:  Linier: fungsi linier dari peubah respons (endogen)  Tidak bias: nilai harapan penduga adalah nilai parameter  Konsisten: untuk n →∞, penduga menuju nilai parameter yang sebenarnya, dan ragam penduga → 0  Ragam yang paling kecil di antara semua penduga yang mungkin  BLUE: Best Linear Unbiased Estimators

6 Struktur Ragam Peragam dari Penduga  Matriks berukuran k × k  Ragam (variance) pada diagonal utama  Peragam (covariance) selainnya

7 Goodness of Fit dari garis Regresi Berganda  R 2 pada regresi linier sederhana tidak dapat dipakai untuk membandingkan dua model dengan jumlah peubah eksogen yang berbeda.  Ketika jumlah peubah X ditambah:  Proporsi keragaman Y yang terjelaskan oleh X akan selalu meningkat.  R 2 akan selalu meningkat seiring jumlah X, tanpa melihat penting tidaknya penambahan X dalam model.  Digunakan adjusted R 2,  Adjusted: disesuaikan terhadap jumlah peubah eksogen X yang digunakan

8 Adjusted R 2  Dengan penyesuaian terhadap jumlah peubah eksogen  Adjusted R 2 dapat digunakan untuk memilih model mana yang terbaik berdasarkan jumlah peubah eksogen yang dipakai.  Terbaik: Adjusted R 2 → 1

9 Kriteria lain untuk Pemilihan Model  Beberapa kriteria digunakan, AIC, FPE, SBC, HQC  Semua memberikan penalti terhadap JK Galat:  Semakin banyak peubah eksogen semakin besar penaltinya  Model terbaik (berdasarkan jumlah peubah eksogen) dipilih dari nilai terkecil kriteria-kriteria tersebut.  Harapan: model terbaik mempunyai nilai terkecil untuk semua kriteria  Tidak selalu terjadi akibat bobot yang berbeda  AIC: lebih banyak digunakan pada data deret waktu

10 Kriteria lain untuk Pemilihan Model Akaike Information Criterion Finite Prediction Error Schwarz Bayesian Criterion Hannah and Quinn Criterion

11 Beberapa Uji Hipotesis Pada Regresi Berganda  Uji keberartian koefisien secara individu  Uji t (sama dengan uji t pada kasus regresi linier sederhana)  Uji keberartian koefisien secara simultan  Uji F  Uji linear restriction:  Uji hubungan linier antara dua atau lebih koefisien: uji F atau uji Wald (pengembangan uji t)  Uji untuk penambahan atau pengurangan peubah eksogen  Uji F atau Uji chi square dengan Likelihood Ratio  Semua uji merupakan perbandingan dari unrestricted model (menggunakan semua peubah eksogen) dan restricted model  Jika perbedaan tidak nyata maka restriction tidak berarti secara statistik.  Model unrestricted lebih baik digunakan.

12 Uji F  Hipotesis nol: restricted model valid  Menduga restricted model dan unrestricted model  Memperoleh JK Galat untuk restricted model dan JK Galat untuk unrestricted model, dan menghitung statistik uji F. JKG R : JK galat restricted model JKG U : JK galat unrestricted model k U : jumlah peubah eksogen (termasuk konstanta) pada unrestricted model k R : jumlah peubah eksogen (termasuk konstanta) pada restricted model

13 Penggunaan uji F untuk Uji keberartian koefisien peubah X secara bersama-sama  Uji goodness fit secara keseluruhan  Pada dua model  Unrestricted: menggunakan semua peubah eksogen  Restricted: hanya menggunakan konstanta (super restricted model)

14  Dari pendugaan masing-masing model diperoleh JKG U dan JKG R  k U =k= 5  k R = 1  Terdapat hubungan khusus untuk JKG R

15  R 2 diperoleh dari model unrestricted. Jika R 2 → 1 maka F akan bernilai besar/nyata secara statistik.  Jika F nyata secara statistik (dari p value), maka terdapat cukup bukti untuk mendukung keberartian model (unrestricted)

16 Uji Chi-Square dengan Likelihood Ratio  Perbandingan likelihood dua model, restricted dan unrestricted  Unrestricted model: menggunakan semua peubah eksogen (sejumlah k)  Restricted model: terdapat beberapa peubah yang tidak digunakan atau ditambahkan (sejumlah m)  Hipotesis nol: beberapa parameter bernilai nol  Menggunakan statistik uji chi-square:

17 Contoh Penggunaan uji Chi-Square untuk menguji pengurangan peubah eksogen  Unrestricted Model:  Restricted Model:

18  Fungsi likelihood dari model regresi:  Fungsi likelihood dari model unrestricted:  Fungsi likelihood dari model restricted:

19  Statistik uji chi-square dihitung berdasarkan dua fungsi likelihood tersebut:  Jika statistik uji tersebut nyata secara statistik, maka akan cukup bukti untuk mendukung hipotesis alternatif:  Peubah eksogen X 4 dan X 5 tidak perlu dihilangkan dari model

20 Uji Wald (pengembangan Uji t)  Pengujian linear restriction  Misalkan:  Dengan hipotesis bahwa koefisien-koefisien tsb mempunyai hubungan linier, misalkan:

21  Ragam dari jumlah dua penduga tersebut:  Dengan sifat tersebut, dapat dilakukan uji t, berdasarkan hipotesis nol:  Uji ini tidak direkomendasikan, terutama jika linear restriction melibatkan lebih dari 2 parameter

22 Uji F untuk pengujian Linear Restriction  Pengujian linear restriction  Misalkan:  Dinyatakan sebagai unrestricted model  Dengan hipotesis bahwa koefisien-koefisien tsb mempunyai hubungan linier, misalkan:  Modifikasi dari unrestricted model: Unrestricted model

23  Lakukan transformasi pada peubah endogen dan eksogen: Restricted model

24  Dari pendugaan masing-masing model diperoleh JKG U dan JKG R  k U =3  k R = 2  Jika statistik uji F ini nyata maka cukup bukti untuk menolak hipotesis tentang hubungan linier yang ada  Selainnya maka hubungan linier dapat diterima

25 Interpretasi Koefisien Pada Multiple Regression Contoh kasus:  Observasi pada 900 karyawan suatu perusahaan  Hubungan antara gaji (wage) dan  lama tahun pendidikan (educ),  tahun pengalaman kerja (exper),  lama tahun bekerja di perusahaan yang sama (tenure)  Digunakan model log lin:  Perubahan Gaji dalam persen  Perubahan Gaji bebas satuan

26 Output Software  Model 1: OLS, using observations  Dependent variable: l_WAGE  coefficient std. error t-ratio p-value   const e-256 ***  EDUC e-026 ***  EXPER e-06 ***  TENURE e-07 ***  Mean dependent var S.D. dependent var  Sum squared resid S.E. of regression  R-squared Adjusted R-squared  F(3, 896) P-value(F) 4.53e-31  Log-likelihood Akaike criterion  Schwarz criterion Hannan-Quinn  Log-likelihood for WAGE =

27  Uji statistik bagi koefisien-koefisien nyata, secara serempak maupun masing-masing  Model berarti secara statistik, walaupun R 2 kecil ^l_WAGE = *EDUC *EXPER *TENURE (0.113)( ) ( ) ( ) n = 900, R-squared = (standard errors in parentheses)  Secara teori ekonomi:  Tingkat Pendidikan berhubungan positif dengan gaji  Pengalaman kerja berhubungan positif dengan gaji  Masa kerja berhubungan positif dengan gaji

28 Interpretasi Masing-masing koefisien  Semua tanda koefisien bersesuaian dengan teori ekonomi ^l_WAGE = *EDUC *EXPER *TENURE (0.113)( ) ( ) ( ) n = 900, R-squared = (standard errors in parentheses)  1 tahun peningkatan tingkat pendidikan meningkatkan gaji sebesar 7.31% dengan menganggap peubah bebas lainnya konstan  1 tahun bertambahnya pengalaman kerja meningkatkan gaji sebesar 1.54% dengan menganggap peubah bebas lainnya konstan  1 tahun bertambahnya masa kerja di perusahaan meningkatkan gaji sebesar 1.3% dengan menganggap peubah bebas lainnya konstan


Download ppt "Ekonometrika Program Studi Statistika Semester Ganjil 2011 DR. Rahma Fitriani, S.Si., M.Sc."

Presentasi serupa


Iklan oleh Google