Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

TOPIK 1 LOGIKA. Pertemuan 4 KALKULUS PREDIKAT/ KALIMAT BERKUANTOR.

Presentasi serupa


Presentasi berjudul: "TOPIK 1 LOGIKA. Pertemuan 4 KALKULUS PREDIKAT/ KALIMAT BERKUANTOR."— Transcript presentasi:

1 TOPIK 1 LOGIKA

2 Pertemuan 4 KALKULUS PREDIKAT/ KALIMAT BERKUANTOR

3 Pendahuluan Telah dibahas kalimat-kalimat yang dihubungkan dengan kata penghubung tertentu. Akan tetapi, kalimat yang dibicarakan tidak memandang banyaknya obyek yang terlibat di dalamnya. Telah dibahas kalimat-kalimat yang dihubungkan dengan kata penghubung tertentu. Akan tetapi, kalimat yang dibicarakan tidak memandang banyaknya obyek yang terlibat di dalamnya. Akan dibahas konsep logika yang diperluas dengan cara menyertakan jumlah (kuantitas) obyek yang terlibat di dalamnya. Akan dibahas konsep logika yang diperluas dengan cara menyertakan jumlah (kuantitas) obyek yang terlibat di dalamnya.

4 Predikat (1) Dalam tata bahasa, predikat menunjuk pada bagian kalimat yang memberi informasi tentang subjek. Dalam tata bahasa, predikat menunjuk pada bagian kalimat yang memberi informasi tentang subjek. Contoh: Contoh: –“… terbang ke bulan” –“… lebih tebal dari kamus” kedua contoh kalimat tersebut merupakan kalimat tidak lengkap. Agar menjadi suatu kalimat yang lengkap, haruslah disubstitusikan subyek di bagian depan kalimat. Misalnya, subyek “Buku ini” disubstitusikan pada kalimat “… lebih tebal dari kamus”, menjadi “Buku ini lebih tebal dari kamus”. Misalnya, subyek “Buku ini” disubstitusikan pada kalimat “… lebih tebal dari kamus”, menjadi “Buku ini lebih tebal dari kamus”.

5 Predikat (2) Dalam ilmu logika, kalimat-kalimat yang memerlukan subyek disebut predikat. Jadi, misalkan : – –p : “terbang ke bulan” – –q : “lebih tebal dari kamus”, maka baik p maupun q adalah predikat. Untuk menyatakan perlunya substitusi subyek (yang tidak diketahui), maka dituliskan p(x) dan q(y). Salah satu cara untuk mengubah predikat menjadi suatu kalimat adalah dengan mensubstitusi semua variabelnya dengan nilai- nilai tertentu.

6 Predikat (3) Misalkan : Misalkan : p(x) : “x habis dibagi 5” dan x disubstitusikan dengan 35, maka p(x) menjadi kalimat benar karena : 35 habis dibagi habis dibagi 5. Cara lain adalah dengan menambahkan kuantor pada kalimat. Cara lain adalah dengan menambahkan kuantor pada kalimat. Kuantor adalah kata-kata seperti “beberapa”, “semua”, dan lain-lain yang menunjukkan berapa banyak elemen yang dibutuhkan agar predikat menjadi benar. Kuantor adalah kata-kata seperti “beberapa”, “semua”, dan lain-lain yang menunjukkan berapa banyak elemen yang dibutuhkan agar predikat menjadi benar.

7 Kuantor Ada 2 (dua) macam kuantor untuk menyatakan jumlah obyek yang terlibat yaitu Ada 2 (dua) macam kuantor untuk menyatakan jumlah obyek yang terlibat yaitu –Kuantor Universal (simbol  ) –Kuantor Eksistensial (simbol  ).

8 Kuantor Universal Kuantor universal menunjukkan bahwa setiap obyek dalam semestanya mempunyai sifat kalimat yang menyatakannya. Kuantor universal menunjukkan bahwa setiap obyek dalam semestanya mempunyai sifat kalimat yang menyatakannya. Kata yang digunakan: semua atau setiap Kata yang digunakan: semua atau setiap Misalnya: Misalnya: p(x) : “x dapat mati”. Karena semua manusia dapat mati, maka hal tersebut dinyatakan dengan : (  x) x  manusia, x  p(x). Kalau semesta sudah jelas, maka dapat dihilangkan. Jadi, jika semesta pembicaraannya sudah jelas, yaitu himpunan manusia-manusia di bumi, maka dituliskan: (  x) p(x). Kalau semesta sudah jelas, maka dapat dihilangkan. Jadi, jika semesta pembicaraannya sudah jelas, yaitu himpunan manusia-manusia di bumi, maka dituliskan: (  x) p(x).

9 Kuantor Eksistensial Kuantor Eksistensial menunjukkan bahwa di antara obyek-obyek dalam semestanya, paling sedikit ada satu obyek (atau lebih, asal tidak semua) yang memenuhi sifat kalimat yang menyatakannya. Kuantor Eksistensial menunjukkan bahwa di antara obyek-obyek dalam semestanya, paling sedikit ada satu obyek (atau lebih, asal tidak semua) yang memenuhi sifat kalimat yang menyatakannya. Kata yang digunakan: terdapat, ada, beberapa, paling sedikit satu Kata yang digunakan: terdapat, ada, beberapa, paling sedikit satu Contoh: Contoh: (  x  D) q(x), disingkat (  x) q(x) : –bernilai T jika paling sedikit ada satu x dalam D yang menyebabkan q(x) benar –hanya bernilai salah jika untuk semua x  D, q(x) bernilai salah.

10 Contoh (1a & 1b) Terjemahkan kalimat di bawah ini dengan menggunakan kuantor  dan  Terjemahkan kalimat di bawah ini dengan menggunakan kuantor  dan  a.Beberapa orang rajin beribadah. b.Setiap bilangan adalah negatif atau mempunyai akar riil. Penyelesaian: Penyelesaian: a. Jika p(x) : “x rajin beribadah” maka kalimat (a) dapat ditulis (  x) p(x). b. Jika p(x) : “x adalah bilangan negatif” q(x) : “x mempunyai akar riil” q(x) : “x mempunyai akar riil” Maka kalimat (b) dapat ditulis (  x)(p(x)  q(x)).

11 Contoh (1c & 1d) Terjemahkan kalimat di bawah ini dengan menggunakan kuantor  dan  Terjemahkan kalimat di bawah ini dengan menggunakan kuantor  dan  c.Ada bilangan yang tidak riil. d.Tidak semua mobil mempunyai karburator. Penyelesaian: Penyelesaian: c. Jika p(x) : “x adalah bilangan riil” maka kalimat (c) dapat ditulis sebagai (  x)  p(x). d. Jika q(y) = “mobil mempunyai karburator” Maka kalimat (d) dapat ditulis sebagai  ((  y) q(y)). atau kalimat (d) dapat ditulis sebagai (  y)  q(y).

12 Contoh (2a) Nyatakan bilangan berkuantor di bawah ini dalam bahasa sehari-hari Nyatakan bilangan berkuantor di bawah ini dalam bahasa sehari-hari (  bilangan riil x) x 2  0 Penyelesaian: Penyelesaian: Berikut ini diberikan beberapa cara untuk menyatakannya :  Semua bilangan riil mempunyai kuadrat tak negatif  Setiap bilangan riil mempunyai kuadrat tak negatif  Sembarang bilangan riil mempunyai kuadrat tak negatif  x mempunyai kuadrat tak negatif untuk setiap bilangan riil x  Kuadrat dari sembarang bilangan riil tidaklah negatif.

13 Contoh (2b) Nyatakan bilangan berkuantor di bawah ini dalam bahasa sehari-hari Nyatakan bilangan berkuantor di bawah ini dalam bahasa sehari-hari (  bilangan bulat m) m 2 = m Penyelesaian: Penyelesaian: Berikut ini diberikan beberapa cara untuk menyatakannya :  Ada bilangan bulat yang kuadratnya sama dengan bilangan itu sendiri  Beberapa bilangan bulat sama dengan kuadratnya sendiri  Terdapat bilangan bulat yang kuadratnya sama dengan bilangan itu sendiri.

14 NILAI KEBENARAN KALIMAT BER-KUANTOR

15 Contoh (3a) Misalkan D adalah himpunan bilangan bulat. Misalkan D adalah himpunan bilangan bulat. Buktikan bahwa : kalimat (  m  D) m 2 = m bernilai benar. Penyelesaian: Penyelesaian: Kalimat (  x) p(x) bernilai benar bila dapat ditunjukkan bahwa ada satu x (atau lebih) yang memenuhi sifat p. Untuk m = 1  D, m 2 = 1 2 = 1 = m. Jadi, kalimat (  m  D) m 2 = m benar untuk m = 1 Terbukti bahwa kalimat (  m  D) m 2 = m benar.

16 Contoh (3b) Misalkan E adalah himpunan bilangan bulat antara 5 dan 10. Misalkan E adalah himpunan bilangan bulat antara 5 dan 10. Buktikan bahwa : kalimat (  m  E) m 2 = m bernilai salah. Penyelesaian: Untuk 5  m  10, 5 2 = 25  5 ; 6 2 = 36  6 ;... ; 10 2 = 100  10 Berarti tidak ada satupun m  E yang memenuhi relasi m 2 = m. Jadi, kalimat (  m  E) m 2 = m salah

17 Contoh (4a) Tentukan kebenaran kalimat di bawah ini (Semesta pembicaraannya adalah himpunan bilangan bulat) Tentukan kebenaran kalimat di bawah ini (Semesta pembicaraannya adalah himpunan bilangan bulat) (  x) x 2 – 2  0 Penyelesaian: Penyelesaian: a. Jika x = 1 maka x 2 – 2 = 1 2 – 2 = -1 < 0 Jadi, tidak semua x memenuhi x 2 – 2  0 sehingga kalimat (  x) x 2 – 2  0 bernilai salah. salah.

18 Contoh (4b) Tentukan kebenaran kalimat di bawah ini (Semesta pembicaraannya adalah himpunan bilangan bulat) Tentukan kebenaran kalimat di bawah ini (Semesta pembicaraannya adalah himpunan bilangan bulat) (  x) x 2 – 10x + 21 = 0 Penyelesaian: Penyelesaian: x 2 – 10x + 21 = 0 x 2 – 10x + 21 = 0 (x – 3)(x – 7) = 0 x1 = 3 ; x2 = 7 Memang benar ada x yang memenuhi relasi x 2 – 10x + 21 = 0(yaitu 3 dan 7) sehingga kalimat (  x) x 2 – 10x + 21 = 0 bernilai benar.

19 Ingkaran Kalimat Berkuantor

20 Secara umum: Secara umum: –Ingkaran kalimat “Semua x bersifat p(x)” adalah : “Ada x yang tidak bersifat p(x)” Dalam simbol:  ((  x  D) p(x))  (  x  D)  p(x) –Ingkaran kalimat : “Ada x yang bersifat q(x)” adalah : “Semua x tidak bersifat q(x)”. Dalam simbol :  ((  x  D) q(x))  (  x  D)  q(x)

21 Contoh (5a) Tulislah ingkaran kalimat berikut ini : Tulislah ingkaran kalimat berikut ini : Terdapatlah bilangan bulat x sedemikian hingga x 2 = 9 Penyelesaian: Penyelesaian: Untuk lebih memudahkan penyelesaian, terlebih dahulu kalimat ditulis ulang dengan menggunakan kuantor, kemudian barulah dituliskan ingkarannya. Kalimat mula-mula:(  x  bulat) x 2 = 9 Ingkaran: (  x  bulat) x 2  9 Atau : Kuadrat semua bilangan bulat tidak sama dengan 9

22 Contoh (5b) Tulislah ingkaran kalimat berikut ini : Tulislah ingkaran kalimat berikut ini : Semua program COBOL mempunyai panjang lebih dari 20 baris. Penyelesaian: Penyelesaian: Kalimat mula-mula: (  x  program COBOL) panjang x > 20 baris) Ingkaran: (  x  program COBOL) (panjang x  20 baris) Atau : Ada program COBOL yang panjangnya kurang dari atau sama dengan 20 baris

23 Contoh (6a) Tulislah kalimat di bawah ini dalam simbol logika berkuantor, kemudian tulislah ingkarannya (semestanya adalah himpunan bilangan bulat) Tulislah kalimat di bawah ini dalam simbol logika berkuantor, kemudian tulislah ingkarannya (semestanya adalah himpunan bilangan bulat) Untuk setiap x, jika x bilangan genap maka x 2 + x genap Penyelesaian: Penyelesaian: Misalkan Z : himpunan bilangan bulat Misal p(x): x bilangan genap q(x):x 2 + x bilangan genap Kalimat mula-mula:(  x  z) (p(x)  q(x)) Ingkaran:(  x  Z)  (p(x)  q(x)) =(  x  Z)  (  p(x)  q(x)) =(  x  Z) (p(x)   q(x)) Atau : “Ada bilangan bulat x yang merupakan bilangan genap tetapi x 2 + x bukan genap”

24 Contoh (6b) Tulislah kalimat-kalimat di bawah ini dalam simbol logika berkuantor, kemudian tulislah ingkarannya (semestanya adalah himpunan bilangan bulat) Tulislah kalimat-kalimat di bawah ini dalam simbol logika berkuantor, kemudian tulislah ingkarannya (semestanya adalah himpunan bilangan bulat) Tidak ada x sedemikian sehingga x bilangan prima dan (x+6) bilangan prima Penyelesaian: Penyelesaian: Kalimat : “Tidak ada x yang bersifat P” ekuivalen dengan kalimat : “Semua x tidak bersifat P” Misal p(x): x bilangan prima q(x):x + 6 bilangan prima Kalimat mula-mula:(  x  Z)  (p(x)  q(x)) Ingkaran:(  x  Z)  {  (p(x)  q(x))} =(  x  Z) (p(x)  q(x)) “Terdapatlah suatu bilangan bulat x sedemikian sehingga x bilangan prima dan x + 6 bilangan prima”

25 Kalimat Berkuantor Ganda

26 Menambahkan beberapa kuantor sekaligus pada kalimat yang sama. Menambahkan beberapa kuantor sekaligus pada kalimat yang sama.

27 Contoh (7a) Nyatakan kalimat di bawah ini dengan menggunakan kuantor ! Nyatakan kalimat di bawah ini dengan menggunakan kuantor ! Ada bintang film yang disukai oleh semua orang Misalkan : semestanya adalah himpunan semua manusia p(x,y) = y menyukai x. Maka kalimat tersebut dapat dituliskan sebagai (  x)(  y) p(x,y).

28 Contoh (7b) Nyatakan kalimat di bawah ini dengan menggunakan kuantor ! Nyatakan kalimat di bawah ini dengan menggunakan kuantor ! Untuk setiap bilangan positif, terdapatlah bilangan positif lain yang lebih kecil darinya Penyelesaian : Kalimat mula-mula bisa dinyatakan sebagai : “Untuk setiap bilangan positif x, terdapatlah bilangan positif y sedemikian hingga y < x”. Dalam simbolik logika : (  bilangan positif x)(  bilangan positif y) y < x.

29 Penggunaan Kuantor Ganda Ada 8 cara berbeda dalam menggunakan 2 kuantor  dan  dalam 2 variabel x dan y, masing-masing adalah : Ada 8 cara berbeda dalam menggunakan 2 kuantor  dan  dalam 2 variabel x dan y, masing-masing adalah : –(  x)(  y), (  y)(  x), (  x)(  y), (  y)(  x), –(  x)(  y), (  y)(  x), (  y)(  x), (  x)(  y). Jika semua kuantornya sama, maka urutan penulisan kuantor-kuantor itu bisa dibalik. Akan tetapi, jika kuantornya berbeda, urutan penulisannya tidak selalu dapat dibalik. Jika semua kuantornya sama, maka urutan penulisan kuantor-kuantor itu bisa dibalik. Akan tetapi, jika kuantornya berbeda, urutan penulisannya tidak selalu dapat dibalik.

30 Contoh (8) Misalkan p(x,y) : “y adalah ibu dari x” Misalkan p(x,y) : “y adalah ibu dari x” Nyatakan arti simbol logika di bawah ini dalam bahasa sehari-hari dan tentukan nilai kebenarannya. Nyatakan arti simbol logika di bawah ini dalam bahasa sehari-hari dan tentukan nilai kebenarannya. –(  x) (  y) p(x,y) Untuk setiap orang x, terdapatlah seorang y, sedemikan hingga y adalah ibu dari x. Dengan kata lain : setiap orang mempunyai ibu. (nilai kebenarannya : benar) –(  y) (  x) p(x,y) Terdapatlah seorang y sehingga untuk semua orang x, y adalah ibu dari x. Dengan kata lain : Ada seseorang yang merupakan ibu dari semua orang di dunia ini. (nilai kebenarannya: salah)

31 Penempatan Kuantor Ganda Secara umum, hubungan antara penempatan kuantor ganda adalah sebagai berikut : Secara umum, hubungan antara penempatan kuantor ganda adalah sebagai berikut : –(  x)(  y) p(x,y)  (  y)(  x) p(x,y) –(  x)(  y) p(x,y)  (  y)(  x) p(x,y) –(  x)(  y) p(x,y)  (  y)(  x) p(x,y)

32 Ingkaran Kalimat Berkuantor Ganda Secara formal: Secara formal: –  { (  x)(  y) p(x,y) }  (  x)(  y)  p(x,y) –  { (  x)(  y) p(x,y) }  (  x)(  y)  p(x,y)

33 Contoh (9) Apakah ingkaran kalimat berikut ini ? (  bilangan bulat n) (  bilangan bulat k) n = 2k Atau : Semua bilangan bulat adalah bilangan genap. Penyelesaian : Ingkaran : (  bilangan bulat n) (  bilangan bulat k) n  2k. Atau : Ada bilangan bulat yang tidak sama dengan 2 kali bilangan bulat lain. Dengan kata lain : Ada bilangan bulat yang tidak genap

34 END OF TOPIC 1 LOGIKA


Download ppt "TOPIK 1 LOGIKA. Pertemuan 4 KALKULUS PREDIKAT/ KALIMAT BERKUANTOR."

Presentasi serupa


Iklan oleh Google