Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

7. TUMBUKAN (COLLISION). 7.1 Tumbukan Dalam kejadian sehari-hari, tumbukan dapat terjadi dalam peristiwa raket memukul bola tenis, dua bola bilyard yang.

Presentasi serupa


Presentasi berjudul: "7. TUMBUKAN (COLLISION). 7.1 Tumbukan Dalam kejadian sehari-hari, tumbukan dapat terjadi dalam peristiwa raket memukul bola tenis, dua bola bilyard yang."— Transcript presentasi:

1 7. TUMBUKAN (COLLISION)

2 7.1 Tumbukan Dalam kejadian sehari-hari, tumbukan dapat terjadi dalam peristiwa raket memukul bola tenis, dua bola bilyard yang bertumbukan, sebuah gerbong kereta menabrak gerbong lainnya, dll. Pada kejadian tumbukan dua buah benda, keduanya dapat berubah bentuk, bisa nyata ataupun tidak. Jika gaya yang terjadi pada saat tumbukan besar, biasanya bentuk benda yang bertumbukan akan kelihatan. Ketika terjadi tumbukan gaya meningkat dari nol menjadi sangat besar dalam waktu yang sangat singkat dan kembali ke nol juga dalam waktu yang singkat (Gambar 7.1)

3 R L F(t) –F(t) x Gambar 7.1 Tumbukan dua benda

4 7.2 Impuls dan Momentum Linier Gambar 7.1 menunjukkan dua gaya yang sama besar tapi berlawanan arah, yaitu F(t) dan – F(t) yang bekerja pada saat terjadi tumbukan antara dua buah partikel yang mempunyai massa yang berbeda. Dari hukum Newton dp = F(t) dt(7.1) F(t) adalah gaya sebagai fungsi dari waktu sebagaimana ditunjukkan pada Gambar 7.2.

5 Gambar 7.2 Gaya sebagai fungsi waktu yang bekerja pada saat terjadi tumbukan dua benda t 0 tt F J F titi tftf F(t)F(t)

6 Dari persamaan (7.1) didapat (7.2) Ruas kiri persamaan (7.2) menghasilkan p f – p i yang merupakan perubahan momentum linier dari partikel R (lihat Gambar 7.1). Sedangkan ruas kanan persamaan (7.2) disebut tumbukan Impuls J. Jadi (7.3) Persamaan (7.3) merupakan definisi dari Impuls dan besarnya sama dengan luas bidang yang dibatasi oleh F(t).

7 Dari persamaan (7.2 dan (7.3) disimpulkan bahwa perubahan momentum linier pada masing-masing benda pada saat terjadi tumbukan sama dengan impuls pada benda tersebut, atau p f – p i =  p = J (7.4) Persamaan (7.4) sesuai dengan teorema Momentum Linier-Impuls Dari kekekalan momentum diketahui bahwa  p pada partikel R sama dengan –  p pada benda L (lihat Gambar 7.1), sehingga persamaan (7.4) dapat ditulis dalam bentuk, p fx – p ix =  p x = J x (7.5) p fy – p iy =  p y = J y (7.6) p fz – p iz =  p z = J z (7.7)

8 Impuls dan momentum adalah besaran vektor. Kedua- duanya mempunyai satuan dan dimensi yang sama. Jika  F adalah besar gaya rata-rata, maka besar dari impuls adalah J =  F  t(7.8)  F dipilih sedemikian rupa sehingga luas persegi panjang pada gambar 7.2 sama dengan luas bidang yang dibatasi oleh kurva F(t). Misal terdapat sejumlah benda yang mempunyai momentum yang sama sebesar mv membentur benda R dalam posisi tetap (Gambar 7.3)

9 x  v Gambar 7.3 Rangkaian benda yang membentur benda R yang berada pada posisi tetap Impuls J pada benda R dan perubahan momentum linier  p dari benda yang bertumbukan mempunyai besar yang sama dan arah yang berlawanan. Jika benda yang menabrak benda R berjumlah n buah dalam interval waktu  t, maka impuls total J pada benda R dalam selang waktu  t adalah J = – n  p (7.9)

10 Substitusi (7.9) ke (7.8) didapat (7.10) Besaran (n/  t) adalah banyak benda yang membentur benda R (lihat Gambar 7.3) Jika tumbukan berhenti pada saat tabrakan sedang berlangsung, maka dari persamaan (7.10) didapat  v = v f – v i = 0 – v i = –v (7.11) Jika benda-benda yang menabrak benda R terpental kebelakang, maka kecepatan benda tidak berubah; hanya arahnya yang berubah, sehingga v f = –v.

11 Selanjutnya didapat  v = v f – v i = –v – v = – 2v (7.12) Dalam interval waktu  t, jumlah massa  m = nm menabrak benda R, sehingga persamaan (7.10) dapat ditulis sebagai, (7.13) dimana  m/  t adalaj jumlah massa dalam interval waktu  t yang menabrak benda R.

12 Contoh 7.1 Sebuah bola baseball, dengan massa 140 gram dilempar secara horizontal dengan laju 39 m/detik dan dipukul ke arah yang berlawanan dengan laju 39 m/detik. Pertanyaan: a)Berapakah impuls pada bola baseball pada saat kontak dengan alat pemukul? b)Jika waktu terjadi benturan antara bola baseball dan alat pemukul 12 x 10 – 4 detik, berapakah besar gaya rata-rata pada baseball? c) Berapakah percepatan rata-rata bola baseball? Penyelesaian

13 Diketahui: m = 140 g = 0,14 kg v i = – 39 m/detik ; v f = 39 m/detik  t = 0,0012 detik a) J = p f – p i = mv f – mv i = (0,14 kg)(39 m/detik) – (0,14 kg)(–39 m/detik) = 10,9 kg.m/detik

14 Contoh 7.2 Sebuah bola baseball, dengan massa 140 gram dilempar secara horizontal dengan laju 39 m/detik dan dipukul ke arah 30 0 terhadap sumbu x dengan laju 45 m/detik. Berapakah gaya rata-rata yang dikenakan pada bola baseball jika benturan antara bola baseball dan alat pemukul berlangsung selama 12 x 10 – 4 detik? Penyelesaian

15 30 0 v f = 45 m/det v i = 39 m/det m = 140 g = 0,14 kg  t = 0,0012 detik

16 x y O v f x = v f cos 30 0 = (45 m/detik)(cos 30 0 ) = 39 m/detik v f x v f y vfvf vivi 30 0 v f y = v f sin 30 0 = (45 m/detik)(sin 30 0 ) = 22,5 m/detik

17 J x = p fx – p ix = m v f x – m v i x = (0,14 kg)(39 m/detik) – (0,14 kg)(– 39 m/detik) = (0,14 kg)( 39 m/detik + 39 m/detik) = 10,92 kg m/detik J y = p f y – p i y = m v f y – m v i y = (0,14 kg)(22,5 m/detik) – (0,14 kg)(0) = 3,15 kg m/detik J

18 7.3 Tumbukan Elastis Satu Dimensi Target Pada Awalnya Tidak Bergerak Misal terdapat dua benda yang mempunyai massa yang berbeda. Salah satu benda dalam keadaan diam pada saat sebelum terjadi tumbukan, selanjutnya disebut sebagai target. Sedangkan benda lainnya bergerak, selanjutnya disebut projektil. Asumsi 1.Sistem yang terdiri dari dua benda ini sebagai sistem diisolasi dan tertutup, artinya tidak ada gaya luar yang berkerja pada sistem dan tidak ada massa yang masuk dan keluar sistem. 2.Besar energi kinetik sebelum dan sesudah tumbukan sama, sehingga dikatakan bahwa tumbukan terjadi secara elastis.

19   m1m1 m2m2 v 1 f v 2 f c) Sedang terjadi tumbukan x   m1m1 m2m2 v cm b) Sedang terjadi tumbukan x   m1m1 m2m2 v1iv1i v2iv2i a)Sebelum tumbukan x Gambar 7.4 Dua benda yang mengalami tumbukan elastis

20 Dengan menerapkan hukum kekekalan momentum linier pada Gambar 7.4 menghasilkan m 1 v 1i = m 1 v 1 f + m 2 v 2 f (7.14) atau m 1 (v 1i – v 1 f ) = m 2 v 2 f (7.15) Sedangkan penerapan hukum kekekalan energi kinetik pada Gambar 7.4 menghasilkan (7.16) atau (7.17)

21 Bagi persamaan7.17 dengan 7.15 menghasilkan v 2 f = v 1 i + v 1 f (7.18) Substitusi v 2 f pada (7.18) ke (7.15) didapat m 1 (v 1i – v 1 f ) = m 2 (v 1 i + v 1 f ) v 1i (m 1 – m 2 ) = v 1 f (m 1 + m 2 ) (7.19) Substitusi v 1 f pada (7.18) ke (7.15) didapat m 1 v 1i = m 1 (v 2 f – v 1i ) + m 2 v 2 f m 1 v 1i + m 1 v 1i = m 1 v 2 f + m 2 v 2 f 2m 1 v 1i = (m 1 + m 2 ) v 2 f (7.20)

22 x Massa Proyektil Sama Dengan Massa Target Jika massa benda 1 (proyektil) sama dengan massa benda 2 (target) atau m 1 – m 2, maka dari persamaan (7.19) dan (7.20) dapat disimpulkan bahwa v 1 f = 0 dan v 2 f = v 1i (7.21) Artinya, jika dua benda yang mempunyai massa yang sama, maka setelah terjadi tumbukan, benda 1 akhirnya akan berhenti (v 1 f = 0 ), sedangkan benda 2 yang awalnya diam, akhirnya bergerak dengan kecepatan yang sama dengan kecepatan benda 1.  m1m1  m2m2

23 x Dalam hal massa target jauh lebih besar dari massa proyektil, maka persamaan (7.19) dan (7.20) menjadi, Persamaan (7.21) menunjukkan bahwa massa benda 1 (proyektil) akan terpental ke arah posisi semula dengan laju sama dengan laju awal. Sedangkan benda 2 akan bergerak maju dengan laju yang sangat kecil.  m1m1  m2m2 (7.22)

24 x  m1m1  m2m2 Massa Proyektil Jauh Lebih Besar dari Massa Target Jika massa proyektil jauh lebih besar dari massa target, maka, (7.19) dan (7.20) menjadi, v 1 f = v 1i dan v 2 f = 2v 1i (7.23) Gerak Pusat Massa Pusat massa dari dua benda yang bertumbukan selalu bergerak tanpa dipengaruhi oleh tumbukan. Berdasarkan hukum kekekalan momentum linier dan persamaan (6.20), P = M v cm = (m 1 + m 2 ) v cm (7.24)

25 Persamaan (7.24) menghubungkan momentum linier P dari sistem yang terdiri dari dua benda dengan kecepatan pusat massa, v cm. Karena momentum P tidak mengalami selama terjadi tumbukan, maka v cm juga tidak berubah. Pusat massa selalu bergerak pada arah dan laju yang sama. Dari persamaan (7.24) kecepatan pusat massa dari tubukan dua buah benda adalah 7.25

26 7.3.2 Target Pada Awalnya Sudah Bergerak Jika kedua benda, baik proyektil maupun target, bergerak maka kekekalan momentum linier adalah m 1 v 1i + m 2 v 2i = m 1 v 1 f + m 2 v 2 f (7.26) atau m 1 ( v 1i – v 1 f ) = – m 2 (v 2i – v 2 f ) (7.27) (7.28) Sedangkan kekekalan energi kinetik adalah atau m 1 (v 1i – v 1 f )(v 1i + v 1 f ) = – m 2 (v 2i – v 2 f )(v 2i + v 2 f ) (7.29)

27 Bagi persamaan (7.29) dengan persamaan (7.28), didapat v 1i + v 1 f = v 2i + v 2 f (7.30) Substitusi v 2 f pada pers. (7.30) ke pers. (7.26), didapat (7.31) Substitusi v 21f pada pers. (7.30) ke pers. (7.26), didapat (7.32)

28 Contoh 7.3 Dua buah bola baja digantungkan pada seutas tali. Pada awalnya kedua bola bersentukan. Massa bola baja 1 adalah 30 g dan massa bola baja 2 adalah 75 g. Mula-mula bola baja 1 ditarik ke arah kiri dengan jarak vertikal dengan posisi awal adalah 8,0 cm. Setelah dilepas, bola tersebut menumbuk bola baja 2. a)Tentukan laju bola baja 1 setelah bertumbukan dengan bola baja 2! b) Tentukan jarak vertikal bola baja 1 terhadap posisi awal pada saat bola bergerak ke kiri setalah bertumbukan dengan bola baja 2! c) Berapa kecepatan bola baja 2 segera setelah bertumbukan dengan bola baja 1? d) Tentukan jarak vertikal bola baja 2 terhadap posisi awal setelah terjadi tumbukan dengan bola baja 1?

29 Diketahui m 1 = 30 g ; m 2 = 75 g ; h 1 = 8,0 cm Ditanya: a) v 1 f ; b) h 1 ; c) v 2 f Penyelesaian h1h1 v 1 i

30 Dari persamaan (7.19) h1h1 v 1 f

31 h1h1

32 c) Dari persamaan (7.20)

33 h1h1 h2h2


Download ppt "7. TUMBUKAN (COLLISION). 7.1 Tumbukan Dalam kejadian sehari-hari, tumbukan dapat terjadi dalam peristiwa raket memukul bola tenis, dua bola bilyard yang."

Presentasi serupa


Iklan oleh Google