Diferensial Fungsi Majemuk

Slides:



Advertisements
Presentasi serupa
Sumber: Pengantar Optimasi Non-Linier Ir. Djoko Luknanto, M.Sc., Ph.D.
Advertisements

OPTIMASI MULTIVARIABEL DENGAN KENDALA KESAMAAN
OPTIMASI DENGAN KENDALA KESAMAAN Oleh : TIM Matematika
Diferensial Fungsi Majemuk
Diferensial & Optimalisasi
Bab 2 PROGRAN LINIER.
Pengali Lagrange Tim Kalkulus II.
PENDAHULUAN MATEMATIKA EKONOMI
TURUNAN DALAM RUANG BERDIMENSI n
Qda = f(Pa, Pb) dan Qdb = f(Pa, Pb)
Teknik Optimasi Semester Ganjil 2013/2014
Disusun oleh : Linda Dwi Ariyani (3F)
9.1 Nilai Optimum dan Nilai Ekstrem

Aplikasi Titik Ekstrim Fungsi Multivariabel Pertemuan 23
BAB I MATEMATIKA EKONOMI
Siti Fatimah, S.E. STIE Putra Bangsa
Optimasi pada Fungsi Majemuk Pertemuan 6
Modul VI Oleh: Doni Barata, S.Si.
Diferensial Parsial Pertemuan 7
Matakuliah : J0182/ Matematika II Tahun : 2006
Desak Putu Risky Vidika Apriyanthi, S.Si. M.Si..
EKO500 Matematika Ekonomi PENGOPTIMUMAN TOPIK LANJUTAN
Matematika Ekonomi PENGOPTIMUMAN BERKENDALA PERSAMAAN
PENDAHULUAN MATEMATIKA EKONOMI.
Penerapan dalam Ekonomi
Persamaan Diverensial
BAB 12 OPTIMASI DENGAN KENDALA-KENDALA KESAMAAN
Pertemuan 23 Diferensial Parsial.
Turunan 3 Kania Evita Dewi.
Turunan 3 Kania Evita Dewi.
TEKNIK-TEKNIK OPTIMISASI DAN INSTRUMEN BARU MANAJEMEN
MATEMATIKA EKONOMI Pertemuan 14-15: Diferensial Fungsi Majemuk
PENDAHULUAN MATEMATIKA EKONOMI.
DIFERENSIASI FUNGSI MAJEMUK
DERIVATIF PARSIAL YULVI ZAIKA Free Powerpoint Templates.
Turunan Fungsi Parsial
DIFERENSIAL FUNGSI MAJEMUK
Matakuliah : K0074/Kalkulus III Tahun : 2005 Versi : 1/0
Optimasi ekonomi 1. Memaksimalkan nilai perusahaan
1.Derivatif Fungsi dua Perubah
TURUNAN DALAM RUANG BERDIMENSI n
PROGRAM LINEAR sudir15mks.
Persamaan dalam dimensi n = f(x,y) = 3x2 + 2y2 –xy -4x – 7y+12 34y
MATEMATIKA EKONOMI Pertemuan 14: Diferensial Fungsi Majemuk
Integral dalam Ruang Dimensi-n
Optimasi ekonomi 1. Memaksimalkan nilai perusahaan
BAB VIII Diferensial Lebih Dari Satu Variabel Orde Lebih Tinggi.
Diferensial & Optimalisasi Diferensial Fungsi Majemuk Optimalisasi Penerapan dalam ekonomi.
Optimisasi: Fungsi dengan Dua Variabel
Diferensial Fungsi Majemuk
Diferensial Fungsi Majemuk
Diferensial Fungsi Majemuk
Integral Lipat Dua dalam Koordinat Kutub
POKOK BAHASAN Pertemuan 10 Diferensial Fungsi Majemuk dan Aplikasinya
Menentukan Maksimum atau Minimum suatu fungsi
Diferensial Fungsi Majemuk
Differensial.
Peta Konsep. Peta Konsep C. Nilai Optimum Suatu Fungsi Sasaran.
Peta Konsep. Peta Konsep C. Nilai Optimum Suatu Fungsi Sasaran.
Limit dan Differensial
Penggunaan Diferensial Parsial (2)
IKG2B3/METODE KOMPUTASI
INTEGRAL.
Derivatif Parsial (Fungsi Multivariat) week 11
Diferensial Fungsi Majemuk
DIFERENSIAL FUNGSI MAJEMUK TIARA WULANDARI, SE, M.Ak STIE PEMBANGUNAN TANJUNGPINANG.
Tim Pengampu MK Kalkulus II Tel-U
Turunan Parsial Definisi: Misalkan f(x,y) adalah fungsi dua peubah x dan y. 1. Turunan parsial pertama dari f terhadap x (y dianggap konstan) didefinisikan.
INTEGRAL.
Transcript presentasi:

Diferensial Fungsi Majemuk

Diferensial Fungsi Majemuk Diferensiasi untuk fungsi-fungsi yang mengandung lebih dari satu macam variabel bebas Diferensiasi parsial (diferensiasi secara bagian demi bagian) Pada umumnya variabel ekonomi berhubungan fungsional tidak hanya satu macam variabel, tetapi beberapa macam variabel

Diferensiasi Parsial 1. y = f(x,z) fx (x,z) = ∂ y fz (x,z) = ∂ y ∂ y + ∂ y 2. p = f(q,o,s) p’ = …. ∂ x y’ ∂ z dx dz dy = ∂ x ∂ z

Contoh y = x + 5 z - 4 x z – 6 x z + 8z – 7 ∂ y (1) = 3x - 8xz – 6z 2 2 2 y = x + 5 z - 4 x z – 6 x z + 8z – 7 ∂ y (1) 2 2 = 3x - 8xz – 6z ∂ x ∂ y 2 (2) = 10z - 4x – 12xz + 8 ∂ z dy = ∂ y ∂ x ∂ z dx + dz 2 2 2 dy = (3x - 8xz – 6z ) dx + (10z - 4x – 12xz + 8) dz

Lanjutan… Dalam contoh diatas ∂y/ ∂x maupun ∂y/ ∂z masih dapat diturunkan secara parsial lagi baik terhadap x maupun terhadap z 2 ∂ y terhadap x : ∂ y (1a) = 6x – 8z ∂ x ∂ x 2 2 ∂ y (1b) ∂ x terhadap z : ∂ y ∂ z = -8x – 12z 2 ∂ y (2a) ∂ z terhadap x : ∂ y ∂ x = -8x – 12z 2 ∂ y (2b) ∂ z terhadap z : ∂ y = 10 – 12x 2

Nilai Ekstrim : Maksimum & Minimum Untuk y = f(x,z) maka y akan mencapai titik ekstrimnya jika : ∂ y ∂ y dan = 0 ∂ z = 0 ∂ x Untuk mengetahui apakah titik ekstrimnya berupa titik maksimum atau titik minimum maka dibutuhkan syarat : 2 2 ∂ y ∂ y Maksimum bila dan < 0 < 0 2 ∂ z 2 ∂ x 2 2 ∂ y ∂ y Minimum bila dan > 0 > 0 2 2 ∂ x ∂ z

Contoh 1. Tentukan apakah titik ektrim dari fungsi dibawah ini merupakan titik maksimum atau minimum : y = -x + 12x – z + 10z – 45 2 2 ∂ y ∂ y = -2x + 12 = -2z + 10 ∂ x ∂ z -2x + 12 = 0, x = 6 -2z + 10 = 0, z = 5 ∂ y ∂ x 2 = -2 < 0 ∂ y ∂ z 2 = -2 < 0 (maks) (maks) 2 2 y = -(6) + 12(6) – (5) + 10(5) – 45 y maks = -36 + 72 – 25 + 50 – 45 = 16

Tugas Tentukan apakah titik ektrim dari fungsi : p = 3q - 18q + s – 8s + 50 merupakan titik maksimum ataukah titik minimum. 2 2

Optimisasi Bersyarat Ketika kita ingin mengoptimumkan suatu fungsi yakni mencari nilai maksimum atau minimumnya, tetapi terhalang oleh fungsi lain yang harus dipenuhi Contoh dalam kasus ekonomi : Ketika seseorang hendak memaksimumkan utilitas atau kepuasannya, tetapi terikat pada fungsi pendapatan Sebuah perusahaan ingin memaksimumkan labanya, namun terikat pada fungsi produksi

Pengganda Lagrange Metode penyelesaian menghitung nilai ekstrim suatu fungsi yang mengahadapi kendala Caranya dengan membentuk fungsi baru yang disebut fungsi Lagrange : menjumlahkan fungsi yang hendak dioptimumkan + hasil kali pengganda Lagrange dengan fungsi kendala Fungsi yang dioptimumkan : z = f(x,y) Syarat yang harus dipenuhi : u = g(x,y) maka fungsi Lagrangenya : F (x,y,λ) = f(x,y) + λ g(x,y)

Lanjutan… Nilai ekstrim dapat dicari dengan memformulasikan masing-masing derivatif parsial pertama = 0 Fx (x,y,λ) = fx + λgx = 0 Fy (x,y,λ) = fy + λgy = 0 Untuk mengetahui jenis nilai ektrimnya, maksimum atau minimum maka syaratnya adalah : Maksimum bila Fxx < 0 dan Fyy < 0 Minimum bila Fxx > 0 dan Fyy > 0

Contoh 1. Tentukan nilai ekstrim z dari fungsi z = 2x + 2y dengan syarat x + y = 8. Jelaskan jenis nilai ekstrimnya. Fungsi Lagrange : F = 2x + 2y + λ(x + y - 8) F = 2x + 2y + λx + λy - 8 λ F ekstrim, F’ = 0 Fx = 2 + 2 λx = 0, diperoleh λ = -1/x ………….(1) Fy = 2 + 2 λy = 0, diperoleh λ = -1/y ………….(2) 2 2 2 2 2 2

Lanjutan… Berdasarkan (1) dan (2) : -1/x = -1/y maka x = y Fungsi Kendala : x + y = 8 y + y = 8 2y = 8, y = 4, y = ± 2 Karena y = ± 2, x = ± 2 z = 2x + 2y = ± 8 jadi nilai ekstrim z = ± 8 Penyidikan nilai ekstrimnya : untuk x = 2 dan y = 2, λ = -1/2 2 2 2 2 2 2

Lanjutan… Fxx =2λ = -1 < 0 Fyy =2λ = -1 < 0 Karena Fxx dan Fyy < 0 nilai ekstrimnya adalah nilai maksimum dengan zmaks = - 8 Untuk x = -2 dan y = -2, λ = ½ Fxx =2λ = 1 > 0 Fyy =2λ = 1 > 0 Karena Fxx dan Fyy > 0 nilai ekstrimnya adalah nilai minimum dengan zmin = 8

Tugas Optimumkan z = xy dengan syarat x + 2y = 10 F = xy + λ(x + 2y – 10) F = xy + λx + 2λy - 10λ Jawab : Syarat yang diperlukan agar F optimum, F’ = 0 F’x = y + λ = 0 diperoleh λ = -y F’y = x + 2λ = 0 diperoleh λ = -1/2 x -y = -1/2x maka 2y = x Fungsi Kendala : x + 2y = 10

Lanjutan… x + 2y = 10 2y + 2y = 10, 4y = 10, y = 2,5 X = 2(2,5) = 5 Jadi Z optimum pada x = 5 dan y = 2,5 Zopt = xy = (5) (2,5) = 12,5

Kondisi Kuhn Tucker Metode Kuhn Tucker merupakan pengembangan lebih lanjut dari model optimisasi bersyarat Jika dalam metode pengganda Lagrange, yang dioptimalkan adalah fungsi terhadap kendala yang berbentuk persamaan Dalam metode Kuhn Tucker, yang dioptimumkan sebuah fungsi yang berbentuk pertidaksamaan

Kondisi Kuhn Tucker Maksimumkan fungsi tujuan f(x,y) terhadap kendala g(z,y) ≤ 0 atau Minimumkan fungsi tujuan f(x,y) terhadap kendala g(z,y) ≥ 0 Cara penyelesaiannya ada 2 : 1. Dengan metode Lagrange yang dimodifikasi kemudian diuji dengan kondisi Kuhn Tucker : Fungsi baru Lagrange : F(x,y, λ) = f(x,y) – λ g(x,y) Dilakukan pengujian terhadap nilai λ

Lanjutan… Jika λ ≤ 0 berarti optimisasi fungsi tujuan f(x,y) tanpa menyertakan fungsi kendala g(x,y) sudah dengan sendirinya memenuhi kendala, sehingga dapat diabaikan Jika λ > 0 kendalanya bersifat mengikat sehingga nilai optimum yang diperoleh berdasarkan fungsi kendala yang berbentuk pertidaksamaan

Metode Kuhn Tucker 2. Metode Kuhn Tucker secara langsung : Rumuskan permasalahannya, misalnya maksimumkan f(x,y) thd g(x,y) ≤ 0 atau minimumkan f(x,y) thd g(x,y) ≥ 0 Tetapkan kondisi Kuhn Tucker : (a) ∂ f(x,y) (b) ∂ f(x,y) (c) λ g (x,y) = 0 dimana g(x,y) ≤ 0 atau g(x,y) ≥ 0 ∂ g (x,y) ∂ x = 0 λ ∂ g (x,y) λ = 0 ∂ y ∂ y

Lanjutan… Diuji untuk λ = 0 dan g(x,y) = 0 untuk menentukan mana diantara yang memenuhi persamaan (a) dan (b) serta pertidaksamaan kendala g(x,y). Nilai-nilai x dan y yang memenuhi ketiga kondisi ini merupakan nilai-nilai yang mengoptimumkan fungsi tujuan f(x,y)

Contoh 1 F’x = 0 → 10y – 5x – λ = 0 → λ = 10y - 5x 2 2 Maksimumkan f(x,y) = 10xy – 2,5x – y terhadap kendala x + y ≤ 9 Jawab : Dengan menganggap x + y = 9 maka berdasarkan metode Lagrange : F(x,y, λ) = 10xy – 2,5x – y – λ(x+y-9) F’x = 0 → 10y – 5x – λ = 0 → λ = 10y - 5x F’y = 0 → 10x – 2y – λ = 0 → λ = 10x – 2y 2 2

Lanjutan… 10y – 5x = 10x – 2y 12y = 15x, y = 1,25x atau x = 0,8y Menurut kendala : x + y = 9 → 0,8y + y = 9 1,8y = 9 y = 5 x = 0,8 (5) = 4 → f(x,y) maks = 135 λ = 10(5) – 5(4) = 10(4) – 2(5) = 30 karena λ > 0 berarti x = 4 dan y = 5 yang memaksimumkan f(x,y) terhadap kendala yang dianggap berbentuk persamaan, berlaku juga terhadap kendala yang berbentuk pertidaksamaan

Contoh 2 Maksimumkan f(x,y) = 20x 10y terhadap x + y ≤ 15 x y + X+5

Contoh 3 Minimumkan f(x,y) = x ² – xy + 2y² terhadap x + y ≥ 8 Jawab : Cara Kuhn Tucker (a) ∂ g (x,y) ∂ x = 0 λ ∂ f(x,y) 2x – y – λ = 0 ∂ g (x,y) ∂ y = 0 λ ∂ f(x,y) (b) -x + 4y – λ = 0 (c) λ g (x,y) = 0 λ(x + y – 8) = 0 Jika λ = 0, maka agar (a) dan (b) terpenuhi haruslah x = y = 0, akan tetapi kemudian kendala x + y ≥ 8 tidak terpenuhi.

Lanjutan… Jika x + y – 8 = 0, dengan kata lain y = 8 – x maka : 2x – y – λ = 0 → 2x – (8-x)- λ= 0 → 3x – 8 – λ = 0 -x + 4y – λ = 0 → -x + 4(8-x)-λ=0 → -5x + 32 – λ = 0 λ = 3x – 8 ….(1) λ = -5x + 32 ….(2) 3x – 8 = -5x + 32 8x = 24 x = 3 , y = 8-3 = 5 Dengan x=5 dan y=3 kendala x+y ≥ 8 terpenuhi. Jadi f(x,y) min = 28