DEFENISI TURUNAN FUNGSI Turunan fungsi f adalah fungsi f’ (dibaca f aksen), yang nilainya pada sembarang bilangan c adalah: Asalkan limitnya ada PROSES.

Slides:



Advertisements
Presentasi serupa
KINEMATIKA Kinematika adalah cabang ilmu Fisika yang membahas gerak benda tanpa memperhatikan penyebab gerak benda tersebut. Penyebab gerak yang sering.
Advertisements

SISTEM KOORDINAT.
Diferensial dx dan dy.
DEFENISI TURUNAN FUNGSI Turunan fungsi f adalah fungsi f’ (dibaca f aksen), yang nilainya pada sembarang bilangan c adalah: Asalkan limitnya ada PROSES.
Bentuk Koordinat Koordinat Kartesius, Koordinat Polar, Koordinat Tabung, Koordinat Bola Desember 2011.
Materi Kuliah Kalkulus II
Bab 8 Turunan 7 April 2017.
MODUL VI : PENERAPAN INTEGRAL
Transformasi geometri.  Pemindahan objek (titik, garis, bidang datar) pada bidang.  Perubahan yang (mungkin) terjadi: Kedudukan / letak Arah Ukuran.
Koordinat Kartesius, Koordinat Tabung & Koordinat Bola
Pertemuan VIII Kalkulus I 3 sks.
BAB II KURVA LINEAR DAN APLIKASI DALAM EKONOMI
Pertemuan VIII Kalkulus I 3 sks.
Koordinat Kartesius, Koordinat Tabung & Koordinat Bola
2.1 Bidang Bilangan dan Grafik Persamaan
Koordinat Kartesius, Koordinat Bola, dan Koordinat Tabung
BAB I LIMIT & FUNGSI.
MATEMATIKA TEKNIK (KP 009). POKOK BAHASAN Fungsi dan Limit Turunan Sederhana Penggunaan Turunan Integral Penggunaan Integral Matriks.
KALKULUS 1 BY : DJOKO ADI SUSILO.
PENGERTIAN SUDUT JURUSAN
PENGERTIAN SUDUT JURUSAN
PERTEMUAN TGL LUAS BIDANG dx dy cos ds k . n  cos 
6. INTEGRAL.
FUNGSI Sebuah fungsi adalah suatu atauran korespondensi (padanan) yang menghubungkan setiap obyek x dalam satu himpunan, yang disebut daerah asal, dengan.
KELAS XI SEMESTER GENAP
BAB 8 TRIGONOMETRI Sumber gambar : peusar.blogspot.com.
BAB V DIFFERENSIASI.
Turunan 3 Kania Evita Dewi.
Turunan 3 Kania Evita Dewi.
TURUNAN Kania Evita Dewi.
1.4 SISTEM KOORDINAT EMPAT BIDANG
TURUNAN / DIFERENSIAL Kalkulus.
FUNGSI KOMPOSISI DAN FUNGSI INVERS
Limit.
Pertemuan ke-6 RELASI DAN FUNGSI.
KELAS XI SEMESTER GANJIL
TURUNAN 2 Kania Evita Dewi.
MATEMATIKA INDUSTRI -FUNGSI-
Limit Fungsi dan kekontinuan
Gerak Melingkar Beraturan (GMB)
LIMIT FUNGSI DAN KEKONTINUAN
TURUNAN/Derivative MATEMATIKA DASAR.
Kumpulan Materi Kuliah
Integral.
TURUNAN FUNGSI Dani Suandi, M.Si..
2. FUNGSI.
FUNGSI & GRAFIKNYA 2.1 Fungsi
BAB III LIMIT dan kekontinuan
LIMIT DAN KEKONTINUAN.
LIMIT FUNGSI DAN KEKONTINUAN
Turunan Fungsi back next home Fungsi naik dan fungsi turun
BAB 7 Limit Fungsi  x = a film Kawat 1 y= f(x) L 1 X.
KALKULUS 1 BY : DJOKO ADI SUSILO.
BAB 8 Turunan.
PERTEMUAN 7 TURUNAN FUNGSI.
4kaK. TURUNAN Pelajari semuanya.
Matematika III ALFITH, S.Pd, M.Pd
KALKULUS I LIMIT DAN KEKONTINUAN
KELAS XI SEMESTER GENAP
Matematika Elektro Semester Ganjil 2004/2005
PERTEMUAN 6 LIMIT FUNGSI.
Pertemuan 9&10 Matematika Ekonomi II
LIMIT DAN KEKONTINUAN FUNGSI
INTEGRAL.
MENU UTAMA TURUNAN FUNGSI
INTEGRAL.
Aturan Pencarian Turunan
Bab 4 Turunan.
Pertemuan 9 Kalkulus Diferensial
PENDAHULUAN KALKULUS yogo Dwi prasetyo, m. SI. prodi teknik industri dan rpl [ref : calculus (Purcell, Varberg, and rigdon)]
Transcript presentasi:

DEFENISI TURUNAN FUNGSI Turunan fungsi f adalah fungsi f’ (dibaca f aksen), yang nilainya pada sembarang bilangan c adalah: Asalkan limitnya ada PROSES MENCARI TURUNAN Langsung dari definisi dengan mengganti sembarang bilangan c dengan x, sehingga didapat: Asalkan limitnya ada. Notasi turunan fungsi sering kita memakai huruf D, misalnya Df=f’ atau Df(x)=f’(x)

Contoh-contoh Carilah turunan fungsi dari f(x)=7x-3 Jawab: Jadi f’ dari fungsi yang diberikan adalah f’(x)=7 2. Carilah turunan dari Jawab:

Teorema-teorema Turunan Teorema A (Aturan konstanta) Jika f(x)=k dengan k suatu konstanta maka untuk sembarang x, f’(x)=0 - yakni: D(k)=0 Teorema B (Aturan fungsi identitas) Jika f(x)=x, maka f’(x)=1 - yakni: D(x)=1 Teorema C (Aturan pangkat) Jika untuk n anggota bilangan Rel, maka - yakni :

SAMBUNGAN-1 Teorema D (Aturan Kelipatan) Jika k suatu konstanta dan f fungsi yang terdefrensialkan, maka (kf)’x=kf’(x) -yakni: Teorema E (Aturan Jumlah) Jika k suatu konstanta dan f fungsi yang terdefrensialkan, maka (f+g)’x=f’(x)+g’(x) -yakni: Teorema F (Aturan Selisih) Jika k suatu konstanta dan f fungsi yang terdefrensialkan, maka (f-g)’x=f’(x)-g’(x) -yakni:

SAMBUNGAN 2 Teorema G (Aturan Perkalian) Andaikan f dan g fungsi-fungsi yang dapat dideferensialkan,maka(f.g)’(x)=f(x)g’(x)+g(x)f’(x) -yakni: Teorema H (Aturan Pembagian) Andaikan f dan g fungsi-fungsi yang dapat dideferensialkan dengan , maka -yakni:

Bukti Teorema Bukti Teorema C (Aturan pangkat), yaitu , maka Bukti: Contoh Soal; Carilah Dy dari:

Pemecahan soal-soal

2. Cari persamaan garis singgung pada grafik y = 3 sin 2x di titik ? Jawab. Kita memerlukan turunan dari sin 2x yaitu: Pada maka turunannya bernilai 6, ini merupakan kemiringan garis singgung. Jadi persamaan garis singgung itu adalah:

garis mendatar yang melalui pusat kincir ? Jawab. 3. Perhatikan sebuah kincir feris yang berjari-jari 30 kaki, berputar berlawanan arah putaran jarum jam dengan kecepatan sudut 2 radian/det. Seberapa cepat dudukan pada pelek naik (dalam arah tegak) pada saat ia berada 15 kaki di atas garis mendatar yang melalui pusat kincir ? Jawab. Misalkan bahwa kitncir berpusat di O(0,0) dan P berada di (30,0) pada saat t=0 Gambar di bawah. Pada saat t, P bergerak melalui sudut 2t radian, sehingga koordinat P(30 sin2t,30 cos2t). Laju P naik adalh turunan koordinat vertikal 30 sin2t yaitu diukur untuk 30sin2t=15, maka sin2t=1/2, sehingga dengan demikian: P(30cos2t,30sint) Jadi P naik pada kaki/det.

Soal-soal TPR Kerjakan nomor ganjil atau genap sesuai dengan BP Saudara, Dalam soal 1-12, carilah Dy mengunakan teorema-teorema sebelumnya: 13. Jika f(0) = 4, f’(0) = -1, g(0) = -3 dan g’(0) = 5 carilah (a) (f - g)’(0); (b) (f . g)(0); (c) (f/g)’(0) 14. Jika f(3) = 7, f’(3) = 2, g(3) = 6 dan g’(3) = -10 carilah (a) (f . g)’(3); (b) (f + g)(3); (c) (f/g)’(3) 15. Carilah semua titik pada garis di mana garis singgungnya mendatar ? 16. Carilah semua titik pada garis di mana garis

17. Tinggi s dalam kaki dari sebuah bola di atas pada saat t detik diberikan oleh . a. Berapa kecepatan sesaat pada saat t=2 ? b. Bilamana kecepatan sesaat ) ? 18. Sebuah bola mengelinding sepanjang bidang miring sehingga jarak s dari titik awalnya setelah t detik adalah kaki. Kapankah kecepatan sesaatnya akan sebesar 30 kaki/detik ?>