Daud Bramastasurya H1C113203 METODE NUMERIK.

Slides:



Advertisements
Presentasi serupa
Pendahuluan Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan, seperti dalam bidang fisika, kimia, ekonomi,
Advertisements

PERSAMAAN NON LINEAR.
PERSAMAAN NON LINEAR.
akar persamaan Non Linier metode newton raphson
AKAR PERSAMAAN NON LINEAR
akar persamaan Non Linier
SOLUSI PERSAMAAN NIRLANJAR RUMUSAN MASALAH, METODE PENCARIAN AKAR,METODE TERTUTUP, DAN METODE TERBUKA DISUSUN OLEH : DEVI WINDA MARANTIKA ( )
Persamaan Non Linier Supriyanto, M.Si..
Metode Numerik Persamaan Non Linier.
4. SOLUSI PERSAMAAN NON-LINIER.
AKAR PERSAMAAN NON LINEAR
AKAR – AKAR PERSAMAAN Penyelesaian suatu fungsi ¦(x) = ax2 + bx + c = 0 pada masa “Pra Komputer” dapat dilakukan dengan cara : Metode Langsung (analitis);
ALGORITMA MATEMATIKA.
4. SOLUSI PERSAMAAN NON-LINIER.
4. SOLUSI PERSAMAAN NON-LINIER.
4. SOLUSI PERSAMAAN NON-LINIER.
By Eni Sumarminingsih, SSi, MM
5. SOLUSI PERSAMAAN NON-LINIER.
HAMPIRAN NUMERIK SOLUSI PERSAMAAN POLINOMIAL Pertemuan 4
X’2 xo x’1 y=f(x) f(x) x xo = solusi eksak x’1, x’2 = solusi pendekatan Solusi pendekatan yang baik: Cukup dekat dengan xo, yaitu | x’-xo|0 Nilai mutlak.
BAB II : PENYELESAIAN AKAR-AKAR PERSAMAAN
Persamaan Non Linier (lanjutan 02)
PERSAMAAN non linier 3.
Optimasi Dengan Metode Newton Rhapson
Metode NEWTON-RAPHSON CREATED BY : NURAFIFAH
METODE NUMERIK AKAR-AKAR PERSAMAAN.
Solusi Sistem Persamaan Nonlinear
GRAFIK FUNGSI SEDERHANA: Grafik FUNGSI ALJABAR
Persamaan Non Linier (Lanjutan 1)
Metode Numerik untuk Pencarian Akar
METODE TERBUKA: Metode Newton Raphson Metode Secant
PERSAMAAN NON –LINIER Pengantar dan permasalahan persamaan Non-Linier
METODE NUMERIK AKAR-AKAR PERSAMAAN.
PERTEMUAN 1 PENDAHULUAN
Pertemuan ke – 4 Non-Linier Equation.
AKAR PERSAMAAN Metode Pengurung.
Akar Persamaan f(x)=0 Metode AITKEN
Metode Terbuka.
X’2 xo x’1 y=f(x) f(x) x xo = solusi eksak x’1, x’2 = solusi pendekatan Solusi pendekatan yang baik: Cukup dekat dengan xo, yaitu | x’-xo|0 Nilai mutlak.
Solusi Persamaan Nonlinear
Akar-akar Persamaan Non Linier
Metode Terbuka Metode Iterasi Titik Tetap, Newton-Rapson, Secant, Kasus Khusus.
Solusi persamaan aljabar dan transenden
METODE NUMERIK AKAR-AKAR PERSAMAAN.
PERSAMAAN NON –LINIER Pengantar dan permasalahan persamaan Non-Linier
SOLUSI PERSAMAAN NON LINEAR
AKAR PERSAMAAN NON LINEAR
Metode Newton-Raphson
Metode Numerik untuk Pencarian Akar
Teknik Komputasi Persamaan Non Linier Taufal hidayat MT.
Materi I Choirudin, M.Pd PERSAMAAN NON LINIER.
Persamaan Linier Metode Regula Falsi
Regula Falsi.
Metode Newton-Raphson
SISTEM PERSAMAAN NIRLANJAR (NONLINIER)
Metode Newton-Raphson Choirudin, M.Pd
MATA KULIAH METODE NUMERIK NOVRI FATMOHERI
PERSAMAAN NON –LINIER Pengantar dan permasalahan persamaan Non-Linier
PRAKTIKUM II METODE NUMERIK
Damar Prasetyo Metode Numerik I
Metode Terbuka Metode Iterasi Titik Tetap, Newton-Rapson, Secant, Kasus Khusus.
Pendahuluan Metode Numerik Secara Umum
AKAR-AKAR PERSAMAAN Muhammad Fitrullah, ST
Bab 2 AKAR – AKAR PERSAMAAN
FUNGSI DUA VARIABEL ATAU LEBIH
Gunawan.ST.,MT - STMIK-BPN
Persamaan non Linier Indriati., ST., MKom.
Persamaan Non Linier Metode Tabel Metode Biseksi Metode Regula Falsi
Pertemuan 9 Kalkulus Diferensial
Materi 5 Metode Secant.
Transcript presentasi:

Daud Bramastasurya H1C113203 METODE NUMERIK

Metode Iterasi Sederhana Metode iterasi sederhana adalah metode yang memisahkan x dengan sebagian x yang lain sehingga diperoleh : x = g(x). Contoh : y=x-ex diubah menjadi : g(x)=ex g(x) Inilah yang menjadi dasar iterasi pada metode iterasi sederhana Metode iterasi sederhana secara grafis dijelaskan sebagai berikut : Grafik Metode Iterasi Sederhana y=x,g=ex

Penyelesaian Metode Iterasi Sederhana Selesaikan x +ex = 0 Jawab : Persamaan diubah menjadi g(x) = -ex Ambil titik awal di x0 = -1 , maka Iterasi 1 : x = -e-1= -0.3679 F(x) = 0,3243 Iterasi 2 : x = -e-0,3679 = -0,6922 F(x) = -0,19173 Iterasi 3 : x = -e-0,6922 = -0,50047 F(x) = 0,10577 Iterasi 4 : x = -e-0,50047 = -0,60624 F(x) = -0,06085 Iterasi 5 = x = -e-0,60624 = -0,5454 F(x) = 0,034217 Pada iterasi ke 10 diperoleh x = -0,56843 dan F(x) = 0,034217. Iterasi 3 : x = -e-0,6922 = -0,50047 F(x) = 0,10577

Metode Newton Raphson Metode Newton Raphson adalah metode pendekatan yang menggunakan satu titik awal dan mendekatinya denga memperhatikan slope atau gradien pada titik tersebut. Titik pendekatan ke n+1 dituliskan sebagai berikut : Gambar Metode Newton Raphson

Penyelesaian Metode Newton Raphson Selesaikan persamaan x - e-x = 0 dengan titik pendekatan awal x0 =0 f(x) = x - e-x Æ f’(x)=1+e-x f(x0) = 0 - e-0 = -1 f’(x0) = 1 + e-0 = 2 f(x1) = -0,106631 dan f’(x1) = 1,60653 f(x2) = -0,00130451 dan f1(x2) = 1,56762 f(x3) = -1,96.10-7. Suatu bilangan yang sangat kecil. Sehingga akar persamaan x = 0,567143.

Permasalahan Metode NewtonRaphson Metode ini tidak dapat digunakan ketika titik pendekatannya berada pada titik ekstrim atau titik puncak, karena pada titik ini nilai F1(x) = 0 sehingga nilai penyebut dari = nol, secara grafis dapat dilihat sebagai berikut : Bila titik pendekatan berada pada titik puncak, maka titik selanjutnya akan berada di tak berhingga. Metode ini menjadi sulit atau lama mendapatkan penyelesaian ketika titik pendekatannya berada di antara dua titik stasioner. Bila titik pendekatan berada diantara dua titik puncak akan dapat mengakibatkan hilangnyapenyelesaian (divergensi). Hal ini disebabkan titik selanjutnya berada pada salah satu titik puncak atau arah pendekatannya berbeda.

Penyelesaian Permasalahan Metode Newton Raphson Contoh Penyelesaian Permasalahan Metode Newton Raphson Untuk dapat menyelesaikan kedua permasalahan ada metode newton raphson ini, maka metode newton raphson perlu dimodifikasi dengan : 1. Bila titik pendekatan berada pada titik puncak maka titik pendekatan tersebut harus di geser sedikit, dimana adalah konstanta yang ditentukan dengan demikian dan metode newton raphson tetap dapat berjalan. 2. Untuk menghindari titik-titik pendekatan yang berada jauh, sebaiknya pemakaian metode newton raphson ini didahului oleh metode tabel,sehingga dapat di jamin konvergensi dari metode newton raphson. Selesaikan persamaan : x . e-x + cos(2x) = 0 Jawab : Bila menggunakan titik pendekatan awal x0 = 0,176281 f(x) = x . e-x + cos(2x) f1(x) = (1-x) e-x –2 sin (2x) Sehingga f(x0) = 1,086282 dan f1(x0) = -0,000015

Iterasi menggunakan metode Newton Raphson Pendekatan awal x0=0.5 iterasi dari metode Newton Raphson \ Akar yang ditemukan x=71365 Akar yang ditemukan adalah x=0.973692

Metode Secant Metode Secant merupakan perbaikan dari metode regula-falsi dan Newton Raphson, dimana kemiringan dua titik dinyatakan secara diskrit, dengan mengambil bentuk garis lurus yang melalui satu titik.

Penyelesaian Metode Secant Grafik Fungsi Selesaikan persamaan Jawab : Berdasarkan gambar grafk didapatkan akar terletak pada range [0.8, 0.9], maka X0 = 0.8 dan x1 = 0.9, sehingga : y0 = F(x0) = -0.16879 y1 = F(x1) = 0.037518

SEKIAN TERIMAKASIH