BARISAN GEOMETRI
BARISAN GEOMETRI DEFINISI: Barisan geometri adalah suatu barisan dengan pembanding (rasio) antara dua suku yang berurutan selalu tetap. Bentuk umum U1, U2, U3, …, Un atau a, ar, ar2, …, arn-1
Bentuk umum: U1, U2, U3, …, Un atau a, ar, ar2, …, arn-1 Jika diketahui suatu barisan geometri U1, U2, …, Un dan dimisalkan U1 = a dengan rasionya r maka dapat ditulis: U1 = a U2 = U1 .r = a.r = ar2-1 U3 = U2.r = (ar) r = ar2 = ar3-1 : Un = a.r.r…r = arn-1
Rumus suku ke-n barisan geometri Misalkan terdapat suatu barisan geometri U1, U2, …, Un maka rumus umum suku ke-n dengan suku pertamanya a dan rasionya r adalah : Un = ar n-1 pada barisan geometri, berlaku
Contoh Soal Barisan Geometri
1. Suku ketiga dan suku keenam dari suatu barisan geometri berturut-turut adalah 32 dan 2.048. Tentukan suku pertama dan rasio deret geometri itu ! Jawab : U3 = 32 U6 = 2048 32 r3=2048 r3=64 r=4 Misal : U3 = a . r2 32 = a . 42 a = 2
3 buah bilangan a, b, dan c membentuk barisan geometri. Tunjukan bahwa sama dengan Jawab :
3.Suku pertama sebuah barisan geometri adalah , sedangkan suku keempatnya sama dengan . Tentukan rasio dan suku ke-enambelas dari barisan itu ! Jawab : = U4 = U4 = a . r3 = . r3 r3 = r = =
U16 = a . = . = . = . =
4. Tentukan nilai rasio dari barisan geometri yang terbentuk pada : a 4. Tentukan nilai rasio dari barisan geometri yang terbentuk pada : a. Bilangan-bilangan di antara ¼ dan 8, disisipkan sebanyak 4 buah bilangan. b. Bilangan-bilangan di antara 2 dan 162, disisipkan sebanyak 3 buah bilangan, Jawab : a) x = ¼ , y = 8, dan k = 4(genap), maka nilai r hanya ada 1 kemungkinan :
b) x = 2, y = 162, dan k = 3 (ganjil), maka nilai r ada 2 kemungkinan : r = +3 atau r = -3 Jadi, nilai rasio dari barisan geometri yang terbentuk adalah r =3 atau r = -3. Untuk r = 3, barisan geometri yang terbentuk 2, 6, 18, 54, 162, sedangkan untuk r = -3, barisan geometri yang terbentuk adalah 2 , -6, 18, -54, 162.
soal barisan geometri Suku ke-5 barisan geometri adalah 243, hasil bagi suku ke-9 dengan ke-6 adalah 27. Suku ke-2 adalah . . . a. 3 c. 7 e. 12 b. 5 d. 9 2. Jika k + 3, 5k - 9, 11k + 9 membentuk barisan geometri, maka jumlah semua nilai k yang memenuhi adalah . . . a. 66/4 c. 66/7 e. 66/11 b. 66/5 d. 66/10
3. Suku – suku barisan geometri tak hingga adalah positif, jumlah suku U1 + U2 = 45 dan U3 + U 4 = 20, maka jumlah suku barisan itu adalah . . . a. 65 c. 90 e. 150 b. 81 d. 135 4. Suatu tali dibagi menjadi tujuh bagian dengan panjang yang membentuk suatu barisan geometri. Jika yang paling pendek adalah 3 cm dan yang paling panjang 192 cm, maka panjang tali semula sama dengan . . . a. 379 b. 383 e. 387 b. 381 d. 385
5. Jika suku pertama barisan geometri adalah 3 dan suku ke-6 adalah 96, maka 3072 merupakan suku ke . . a. 9 c. 11 e. 13 b. 10 d. 12 6. Diketahui a dan b adalah akar – akar persamaan x2 – 2x + k = 0 dan a – 5/2, a + b, a + 5 merupakan barisan geometri dengan suku – suku positif. Nilai k = . . . a. -3 c. 2 e.6 b. -2 d. 3 7. Jika suku pertama dan keempat barisan geometri berturut – turut a1/2 dan a3x+1/2 sedang suku kesepuluh sama dengan a91/2 maka nilai x adalah . . . a. 25 c. 5 e. 15 b. -5 d. 16
8. Dalam suatu barisan geometri U1 + U3 = p dan U2 + U4 = q maka U4 = . . . a. p3/ ( p2 + q2 ) c. ( p3 + q3 ) / ( p2 + q2 ) e. q2 / ( p2 + q2 ) b. q3 / ( p2 + q2 ) d. p2 / ( p2 + q2 ) 9. Diketahui x1 dan x2 adalah akar – akar positif persamaan kuadrat x2 + ax + b = 0. Jika 12, x1, x2 adalah tiga suku pertama barisan aritmatika dan x1, x2, 4 adalah tiga suku pertama barisan geometri, maka diskriminan persamaan kuadrat tersebut adalah . . . a. 6 c. 15 e. 54 b. 9 d. 30
10. Tiga bilangan positif membentuk barisan geometri dengan rasio r > 1. Jika suku tengah ditambah 4, maka terbentuk sebuah barisan aritmetika yang jumlahnya 30. Hasil kali ketiga bilangan ini adalah . . . a. 64 c. 216 e. 1000 b. 125 d. 343