Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

1 Analisis Variansi Statistika I (Inferensi) Ch. Enny Murwaningtyas 31 Maret 2009.

Presentasi serupa


Presentasi berjudul: "1 Analisis Variansi Statistika I (Inferensi) Ch. Enny Murwaningtyas 31 Maret 2009."— Transcript presentasi:

1 1 Analisis Variansi Statistika I (Inferensi) Ch. Enny Murwaningtyas 31 Maret 2009

2 2 Analisis Variansi Analisa variansi (ANOVA) adalah suatu metoda untuk menguji hipotesis kesamaan rata-rata dari tiga atau lebih populasi. Asumsi  Sampel diambil secara random dan saling bebas (independen)  Populasi berdistribusi berdistribusi Normal  Populasi mempunyai kesamaan variansi

3 3 Analisis Variansi Misalkan kita mempunyai k populasi. Dari masing-masing populasi diambil sampel berukuran n. Misalkan pula bahwa k populasi itu bebas dan berdistribusi normal dengan rata-rata  1,  2, …. dan  k dan variansi  2. Hipotesa : H 0 :  1 =  2 = … =  k H 1 : Ada rata-rata yang tidak sama

4 4 Analisis Variansi Populasi Total 12…i…k x 11 x 21 …xi1xi1 …Xk1Xk1 x 12 x 22 …xi2xi2 …Xk2Xk2 :::::: x1nx1n x2nx2n …x in …x kn TotalT1T1 T2T2 …TiTi …TkTk T  T i  adalah total semua pengamatan dari populasi ke-i T  adalah total semua pengamatan dari semua populasi

5 5 Rumus Hitung Jumlah Kuadrat Jumlah Kuadrat Total = Jumlah Kuadrat Perlakuan = Jumlah Kuadrat Galat =

6 6 Tabel Anova dan Daerah Penolakan Sumber Variasi Derajat bebas Jumlah kuadrat Kuadrat Rata-rata Statistik F Perlakuank – 1JKP KRP = JKP/(k – 1 ) F = KRP/KRG Galatk(n-1)JKG KRG = JKG/(k(n-1)) Totalnk – 1JKT H 0 ditolak jika F > F(  ; k – 1; k(n – 1))

7 7 Contoh 1 Sebagai manager produksi, anda ingin melihat mesin pengisi akan dilihat rata-rata waktu pengisiannya. Diperoleh data seperti di samping. Pada tingkat signifikansi 0.05 adakah perbedaan rata-rata waktu ? Mesin1 Mesin2 Mesin

8 8 Penyelesaian  Hipotesa : H 0 :  1 =  2 =  3 H 1 : Ada rata-rata yang tidak sama  Tingkat signifikasi  = 0.05  Karena df 1 = derajat bebas perlakuan = 2 dan df 2 = derajat bebas galat = 12, maka f(0.05;2;12) = Jadi daerah pelokannya: H 0 ditolak jika F > 3.89

9 9 Data Populasi Total Total

10 10 Jumlah Kuadrat Total

11 11 Jumlah Kuadrat Perlakuan dan Jumlah Kuadrat Galat

12 12 Tabel Anova dan Kesimpulan Sumber Variasi Derajat Bebas Jumlah Kuadrat Kuadrat Rata-rata Statistik F Perlakuan3-1= F = Galat15-3= Total15-1= Karena F hitung = > 3.89 maka H 0 ditolak. Jadi ada rata-rata yang tidak sama.

13 13 Rumus Hitung Jumlah Kuadrat Untuk ukuran sampel yang berbeda Jumlah Kuadrat Total = Jumlah Kuadrat Perlakuan = Jumlah Kuadrat Galat =

14 14 Tabel Anova Untuk ukuran sampel yang berbeda Sumber Variasi Derajat bebas Jumlah kuadrat Kuadrat Rata-rata Statistik F Perlakuank – 1JKP KRP = JKP/(k – 1 ) F = KRP/KRG GalatN – kJKG KRG = JKG/(N - k) TotalN – 1JKT

15 15 Contoh 2 Dalam Sebuah percobaan biologi 4 konsentrasi bahan kimia digunakan untuk merangsang pertumbuhan sejenis tanaman tertentu selama periode waktu tertentu. Data pertumbuhan berikut, dalam sentimeter, dicatat dari tanaman yang hidup. Apakah ada beda pertumbuhan rata-rata yang nyata yang disebabkan oleh keempat konsentrasi bahan kimia tersebut. Gunakan signifikasi 0,05. Konsentrasi

16 16 Penyelesaian  Hipotesa : H 0 :  1 =  2 =  3 =  4 H 1 : Ada rata-rata yang tidak sama  Tingkat signifikasi  = 0.05  Karena df 1 = derajat bebas perlakuan = 3 dan df 2 = derajat bebas galat = 16, maka f(0.05;3;16) = Jadi daerah pelokannya: H 0 ditolak jika F > 3.24

17 17 Data Populasi Total Total

18 18 Jumlah Kuadrat Total

19 19 Jumlah Kuadrat Perlakuan dan Jumlah Kuadrat Galat

20 20 Tabel Anova dan Kesimpulan Sumber Variasi Derajat Bebas Jumlah Kuadrat Kuadrat Rata-rata Statistik F Perlakuan4-1= F = Galat20-4= Total20-1= Karena F hitung = > 3.24 maka H 0 ditolak. Jadi ada rata-rata yang tidak sama.

21 21 Latihan 1 Kapasitas Mitsubishi (A) Toyota (B) Honda (A) Seorang kontraktor di bidang jenis jasa pengangkutan ingin mengetahui apakah terdapat perbedaan yang signifikan pada kapasitas daya angkut 3 merk truk, yaitu Mitsubishi, Toyota dan Honda. Untuk itu kontraktor ini mengambil sampel masing-masing 5 truk pada tiap-tiap merek menghasilkan data seperti disamping. Jika ketiga populasi data tersebut berdistribusi normal dan variansi ketiganya sama, uji dengan signifikasi 5% apakah terdapat perbedaan pada kwalitas daya angkut ketiga merek truk tersebut

22 22 Latihan 2 Seorang guru SMU mengadakan penelitian tentang keunggulan metode mengajar dengan beberapa metode pengajaran. Bila data yang didapat seperti pada tabel disamping, ujilah dengan signifikasi 5% apakah keempat metode mengajar tersebut memiliki hasil yang sama? (asumsikan keempat data berdistribusi Normal dan variasnisnya sama) Metode ABCD


Download ppt "1 Analisis Variansi Statistika I (Inferensi) Ch. Enny Murwaningtyas 31 Maret 2009."

Presentasi serupa


Iklan oleh Google