Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

SISTEM BILANGAN Sistem bilangan yang biasa digunakan pada piranti digital adalah sistem-sistem bilangan biner, desimal, dan heksa-desimal. Sistem desimal.

Presentasi serupa


Presentasi berjudul: "SISTEM BILANGAN Sistem bilangan yang biasa digunakan pada piranti digital adalah sistem-sistem bilangan biner, desimal, dan heksa-desimal. Sistem desimal."— Transcript presentasi:

1 SISTEM BILANGAN Sistem bilangan yang biasa digunakan pada piranti digital adalah sistem-sistem bilangan biner, desimal, dan heksa-desimal. Sistem desimal tidak mudah diterapkan dalam mesin digital. Sistem bilangan yang paling mudah diterapkan di dalam mesin digital adalah sistem biner (basis-2) karena sistem tersebut hanya mengenal 2 (dua) keadaan.

2 Semua sistem bilangan tersebut temasuk ke dalam sistem bilangan berbobot, artinya nilai suatu angka tergantung dari posisi relatifnya terhadap koma atau angka satuan. Misalnya bilangan 5725,5 dalam desimal. Ketiga angka 5 memiliki nilai yang berbeda, angka 5 paling kanan bernilai lima persepuluhan, angka 5 yang tengah bernilai lima (satuan) sedangkan angka 5 yang tersisa bernailai lima ribuan.

3 Dikenal beberapa cara menyatakan suatu bilangan dalam basis-16 atau heksa-desimal, misalnya = 96h = H96 = #96 = $96 = 96H. Untuk membedakan suatu bilangan dalam sistem bilangan tertentu digunakan konvensi notasi. Contoh bilangan ‘101’ basis-2 akan ditulis dalam bentuk ‘101 2 ’ atau ‘101 B’ untuk mencegah terjadinya salah pengertian dengan bilangan ‘101 8 ’, ‘101 10, atau ‘ ’. Dalam konvensi tersebut dijumpai bahwa suatu bilangan yang tidak disertai indeks berarti bilangan tersebut dinyatakan dalam desimal atau basis-10.

4 Basis-10 (desimal) Dalam sistem desimal (basis-10) memupnyai simbol angka (numerik) sebanyak 10 buah simbol, yaitu 0, 1, 2, 3, 4, 5, 6, 7, 8, dan 9. Nilai suatu bilangan dalam basis-10 dapat dinyatakan sebagai  (N x 10 a ) dengan N = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 a = …, -3, -2, -1, 0, 1, 2, 3, … (bilangan bulat yang menyatakan posisi relatif N terhadap koma atau satuan).

5 Contoh : = 3 x x x ,61 10 = 0 x x x = 6 x x , = 9 x x x x x

6 Basis-2 (biner) Dalam sistem biner (basis-2) memupnyai simbol angka (numerik) sebanyak 2 buah simbol, yaitu 0, dan 1. Nilai suatu bilangan basis-2 dalam basis-10 dapat dinyatakan sebagai  (N x 2 a ) dengan N = 0 atau 1; dan a = …, -3, -2, -1, 0, 1, 2, 3, …(bilangan bulat dalam desimal yang menyatakan posisi relatif N terhadap koma atau satuan).

7 Contoh : = 1 x x x 2 0 = = ,101= 0 x x x x 2 -3 = 0 + 0, ,125 = 0, ,01= 1 x x x 2 -2 = ,25 = 3,2510.

8 Basis-8 (oktal) Dalam sistem oktal (basis-8) memupnyai simbol angka (numerik) sebanyak 8 buah simbol, yaitu 0, 1, 2, 3, 4, 5, 6, dan 7. Nilai suatu bilangan basis-8 dalam basis-10 dapat dinyatakan sebagai  (N x 8 a ) dengan N = 0, 1, 2, 3, 4, 5, 6, atau 7; dan a = …, -3, -2, -1, 0, 1, 2, 3, …(bilangan bulat dalam desimal yang menyatakan posisi relatif N terhadap koma atau satuan).

9 Contoh : 647,35 8 = 6 x x x x x 8 -2 = , , = 423,

10 Basis-16 (heksa-desimal) Sistem heksa-desimal (basis-16) mempunyai simbol angka (numerik) sebanyak 16 buah simbol. Karena angka yang telah dikenal ada 10 maka perlu diciptakan 6 simbol angka lagi yaitu A, B, C, D, E, dan F dengan nilai A 16 = ; B 16 = 11 10, C 16 = 12 10, D 16 = 13 10, E 16 = 14 10, dan F 16 = Dengan demikian simbol angka-angka untuk sistem heksa- desimal adalah 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, dan F.

11 Nilai suatu bilangan basis-16 dalam basis-10 dapat dinyatakan sebagai  (N x 16 a ) dengan N = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, atau 15; a = …, -3, -2, -1, 0, 1, 2, 3, …(bilangan bulat dalam desimal yang menyatakan posisi relatif N terhadap koma atau satuan).

12 Contoh : 584AED 16 = 5 x x x x x 16 0 = = E,1A 16 = 14 x x x = , , = 14,

13 Konversi (Pengubahan) Bilangan =  (N x n a ) =  (N x 2 a ) = N x 64 + N x 32 + N x 21 = 1 x x x 2 1 (semua posisi belum diperhitungkan) = 1 x x x x x x x 2 0 = =

14 =  (N x n a ) =  (N x 16 a ) = N x N x N x 16 + N x 1 = 4 x A x x x 16 0 = 4 A 3 E = 4A3E 16.

15 Cara pembagian berulang : Cara ini sangat baik untuk bilangan desimal yang kecil maupun yang besar. Cara konversinya adalah membagi bilangan desimal dan hasil baginya secara berulang dengan basis tujuan kemudian menuliskan sisanya hingga diperoleh hasil bagi 0. Hasil konversinya adalah menuliskan sisa pertama pada posisi yang paling kecil dan sisa terakhir pada posisi yang paling besar.

16 Untuk mengubah bilangan tidak bulat (pecahan) dilakukan dengan dua tahap. Tahap pertama mengubah bagian bulat (di sebelah kiri tanda koma) dengan cara seperti yang telah dijelaskan di atas. Tahap ke dua mengubah bagian pecahannya (di sebelah kanan tanda koma) dengan cara bahwa bilangan pecahan dikalikan berulang-ulang dengan basis tujuan sampai hasil perkalian terakhir sama dengan 0 setelah angka di sebelah kiri tanda koma dari hasil kali setiap perkalian diambil.

17 Selanjutnya angka-angka di sebelah kiri koma yang diambil tadi dituliskan secara berderet dari kiri ke kanan. Misalnya mengubah bilangan 98,37510 menjadi basis-2. Tahap pertama mengubah bilangan bulat ke dalam basis-2 yang hasilnya adalah Tahap ke dua mengubah bilangan pecahan 0,37510 ke dalam basis-2.

18 0,375 x 2 = 0,75 dan angka di sebelah kiri koma adalah 0 0,75 x 2 = 1,5 dan angka di sebelah kiri koma adalah 1 0,5 x 2 = 1,0 dan angka di sebelah kiri koma adalah 1. Hasil pengambilan angka di sebelah kiri koma adalah 0,011. Selanjutnya hasil konversi kedua tahap tersebut digabungan sesuai dengan posisinya. Hasil gabungannya adalah ,011. Dengan demikian 98, = ,011 2.

19 Tidak semua pecahan mudah dikonversi. Ada kalanya hasil konversi bilangan pecahan tersebut sangat panjang atau bahkan tidak pernah dihasilkan bilangan yang tepat. Pecahan 2/3 yang dikonversikan ke dalam bentuk desimal menghasilkan 0,666666…. di mana angka 6 tidak akan pernah berakhir. Misalnya bilangan 34, diubah ke dalam bilangan basis-8. Bagian bulatnya menghasilkan 4 x x 8 0 atau 42 8.

20 0,275 x 8 = 2,2 dan angka di sebelah kiri koma adalah 2 0,2 x 8 = 1,6 dan angka di sebelah kiri koma adalah 1 0,6 x 8 = 4,8 dan angka di sebelah kiri koma adalah 4 0,8 x 8 = 6,4 dan angka di sebelah kiri koma adalah 6 0,4 x 8 = 3,2 dan angka di sebelah kiri koma adalah 3 0,2 x 8 = 1,6 dan angka di sebelah kiri koma adalah 1 dan seterusnya. Jadi 34, = 42, …. 8 di mana angka 1463 tidak akan pernah berakhir.

21 Tahap 1 : = 2 x x x 8 0 = = Tahap 2 : = 1 x x x x 5 0 = Jadi =

22 Operasi Bilangan Telah dikenal dengan baik mengenai operasi-dasar bilangan seperti penjumlahan, pengurangan, perkalian dan pembagian. Operasi-operasi bilangan tersebut juga dapat dikenakan pada sistem bilangan yang lain. Prinsip-prinsip operasi bilangan itu sama dengan yang diterapkan pada sistem desimal. Oleh karena belum akrab dengan sistem bilangan selain desimal, maka untuk memudahkan pelaksanaan operasi hitung perlu pertolongan tabel operasi.

23 1. Berapakah banyaknya bit (dalam sistem biner) yang diperlukan untuk memilahkan di antara 99 keadaan yang berbeda ? 2. Ubahlah bilangan biner berikut ke dalam desimal : a b c ,10111 d. 0, e , SOAL-SOAL :

24 DITERUSKAN KESISTEM SANDI 3. Kerjakanlah penjumlahan bilangan berikut sesuai dengan basisnya : a. 1011, ,01 2 b. 231, ,003 4 c d. A87B B4 12 e. 581DF AE5C07 16


Download ppt "SISTEM BILANGAN Sistem bilangan yang biasa digunakan pada piranti digital adalah sistem-sistem bilangan biner, desimal, dan heksa-desimal. Sistem desimal."

Presentasi serupa


Iklan oleh Google