Pertemuan 23 Diferensial Parsial
Tujuan Mahasiswa dapat menggunakan Diferensial parsial untuk mencari niali ekstrim suatu fungsi
Nilai Ekstrim Nilai ekstrim dari sebuah fungsi yg mengandung lebih dari satu variabel bebas dpt dicari dgn pengujian sampai derivatif kedua-nya. Untuk y =f(x,z), mk y mencapai ekstrim jika y/x = 0 dan y/z = 0, sedang utk menentukan maks & min adalah : maks , bila ²y/x² < 0 & ²y/z² < 0 min, bila ²y/x² > 0 & ²y/z² > 0
Nilai Ekstrim(2) 2y/x2 = - 2 <0 dan 2y/z2 = - 2 <0 Contoh : Selidiki jenis ekstrim dari fungsi y = -x² + 12x - z² + 10z – 45 ? y/x=-2x+12 ; y/z =-2z +10 -2x+12=0 x=6 -2z+10=0 z=5 y = -(6)²+12(6)-(5)²+10(5)-45 = 16 2y/x2 = - 2 <0 dan 2y/z2 = - 2 <0 Maka ttk ekstrim maksimum, ymaks = 16
Optimisasi Bersyarat Suatu optimisasi dimana fungsi yang hendak dioptimumkan menghadapi suatu kendala (constraint). Perhitungan nilai ekstrim sebuah fungsi yg menghadapi kendala berupa sebuah fungsi lain, dapat diselesaikan dengan metoda : pengganda lagrange dan kuhn-tucker..
Pengganda Lagrange Mis fungsi yg dioptimumkan z=f(x,y) dan syarat yg dipenuhi u=g(x,y) , maka fungsi Lagrangenya : F(x,y, ) = f(x,y) + g(x,y), nilai ekstrim dpt dicari dgn memformulasikan masing2 derivatif parsial pertamanya sama dgn nol. Fx(x,y, ) = fx + gx = 0 Fy(x,y, ) = fy + gy = 0; =pengganda lagrange = var. tak tentu.
Contoh: Tentukan nilai ekstrim z dari fungsi z=2x+2y dgn syarat x² + y² = 8, & jenisnya? F.Lagrange F = 2x + 2y + (x² + y² - 8) = 2x + 2y + x² + y² - 8 Agar F ekstrim, F’ = 0, Fx =2 + 2 x = 0 = -1/x ………… a) Fy =2 + 2 y = 0 = -1/y ………… b) x² + y² = 8 y² + y² = 8 y² =4 y = -2 & 2 Dan x = -2 & 2 Shg z =2x+2y = -8 & 8.
Penyelidikan nilai ekstrim: Utk x=2 & y=2, =-1/2 Fxx = 2 = -1 <0 Fyy =2 = -1 <0 Maka ekstrim maksimum, dgn zmaks = 8 . Utk x=-2 & y=-2, =1/2 Fxx = 2 = 1>0 Fyy =2 = 1 >0 Maka ekstrim minimum, dgn zmin = -8 .
Metoda Kuhn-Tucker Adapun prosedurnya adalah : Z/x - (g/x) = 0 Z/y - (g/x) = 0 Uji :>0 berarti nilai x dan y yang mengoptimumkan persamaan berlaku juga untuk pertidaksamaan (binding). < 0, berarti fungsi kendala tidak mengikat ( non binding) = 0, maka lakukan pengujian terhadap nilai x dan y yang mengoptimumkan (tergantung tujuan apakah minimalisasi atau maximalisasi)