Pertemuan 12 Optimalisasi sistem pengaturan dan Pole Placement

Slides:



Advertisements
Presentasi serupa
Sistem Kontrol – 8 Review, Transfer Fungsi, Diagram Blok, Dasar SisKon
Advertisements

ROOT LOCUS Poppy D. Lestari, S.Si, MT Jurusan Teknik Elektro
Kontroler PID Pengendalian Sistem. Pendahuluan Urutan cerita : 1. Pemodelan sistem 2. Analisa sistem 3. Pengendalian sistem Contoh : motor DC 1. Pemodelan.
ANALISIS TANGGAP TRANSIEN
Bab 8 Kompensasi Dinamik
Karakteristik Respon Dinamik Sistem Lebih Kompleks
Pendahuluan Dalam pembahasan yang lalu, kita telah memperkenalkan root locus yaitu suatu metode yang menganalisis performansi lup tertutup suatu sistem.
1 Pertemuan 18 Matriks Matakuliah: T0016/Algoritma dan Pemrograman Tahun: 2005 Versi: versi 2.
1 Pertemuan 11 Penerapan model full rank Matakuliah: I0204/Model Linier Tahun: Tahun 2005 Versi: revisi.
Jurusan Teknik Gas dan Petrokimia FTUI
Pertemuan 7- 8 Response Sistem Pengaturan
Pertemuan 1 Pendahuluan
Polar plot dan Nyquist plot Pertemuan ke 9
Pertemuan 13 Kestabilan Sistem
Pertemuan 5-6 Metode pemulusan eksponential tunggal
1 Pertemuan 17 Pengujian hipotesis regresi Matakuliah: I0174/Analisis regresi Tahun: 2005 Versi: 1.
1 Pertemuan 5 Konfigurasi blok sistem diskret Matakuliah: H0142/Sistem Pengaturan Lanjut Tahun : 2005 Versi : >
Pertemuan Tempat Kedudukan Akar(Root Locus Analysis)
Pertemuan Analisis dan Desain sistem pengaturan
Pertemuan 9 Analisis State Space dalam sistem Pengaturan
Pertemuan Model Persamaan Ruang Keadaan
Pertemuan 5 Balok Keran dan Balok Konsol
1 Pertemuan 13 Studi Kasus Matakuliah: H0142 / Sistem Pengaturan Lanjut Tahun: 2005 Versi: >
Kestabilan Analisa Respon Sistem.
Fungsi Logaritma Pertemuan 12
Pertemuan 26 PERANCANGAN LANJUT
Pertemuan 5-6 Transformasi Laplace Balik dan Grafik Aliran Sinyal
Representasi Sistem (Permodelan Sistem) Budi Setiyono, ST. MT.
1 Pertemuan 7 Estimable parameter Matakuliah: I0204/Model Linier Tahun: Tahun 2005 Versi: revisi.
Matakuliah : H0134 / Sistem Pengaturan Dasar
Fungsi Alih (Transfer Function) Suatu Proses
KULIAH TEORI SISTEM DISKRIT MINGGU 1 Dosen Pengampu: Dr. Salmah, M.Si
ALJABAR LINIER WEEK 1. PENDAHULUAN
Matakuliah : K0074/Kalkulus III Tahun : 2005 Versi : 1/0
CONTROL SYSTEM ENGINEERING (Dasar Sistem Kontrol)
CONTROL SYSTEM ENGINEERING (Dasar Sistem Kontrol)
CONTROL SYSTEM ENGINEERING (Dasar Sistem Kontrol)
CONTROL SYSTEM ENGINEERING (Dasar Sistem Kontrol)
Pertemuan 19 Polar plot dan Nyquist plot
(Fundamental of Control System)
Response Sistem Pengaturan Pertemuan 4
Reduksi Beberapa Subsistem
Teori Dasar Sistem [IS1223]
Pendahuluan Dalam pembahasan yang lalu kita telah menyelesaikan pelajaran kita mengenai root locus dan analisis dan disain sistem kontrol dengan berbasiskan.
Representasi sistem, model, dan transformasi Laplace Pertemuan 2
Karakteristik Sistem Pengaturan Pertemuan 6
Pertemuan 8 Realisasi digital controller dan kompensator digital
Pertemuan 13 Studi kasus Matakuliah : Sistem Pengaturan Dasar
Pertemuan 26 Studi kasus Matakuliah : H0134 / Sistem Pengaturan Dasar
Pertemuan 10 Analisis State Space untuk sistem diskret
Pertemuan 3 PD Dapat Dihomogenkan
Pertemuan 5 Solusi persamaan linier simultan
Pertemuan 2 Transformasi z
Bab 8 Kompensasi Dinamik
Pertemuan 2 METODOLOGI PENGEMBANGAN SISTEM AKUNTANSI
Analisis Sensitivitas Pertemuan 6
Pertemuan 16 Model not full rank
Fungsi transfer untuk sistem umpan-balik umum
Matakuliah : S0494/Pemrograman dan Rekayasa Struktur
Model Persamaan Ruang Keadaan Pertemuan 12
dimana bentuk responnya ditentukan oleh rasio damping :
Pertemuan 15 Model not full rank
Pertemuan 3 Aljabar Matriks (II)
Pertemuan 18 Pengujian hipotesis regresi
Pendahuluan Dalam pembahasan yang lalu kita telah menyelesaikan pelajaran kita mengenai root locus dan analisis dan disain sistem kontrol dengan berbasiskan.
KULIAH SISTEM KENDALI DISKRIT MINGGU 7
Pertemuan 1 Pengertian Persamaan Diferensial (PD)
Fungsi transfer untuk sistem umpan-balik umum
SISTEM KENDALI INDUSTRI
Pertemuan 9 Regresi dengan peubah dummy
Transcript presentasi:

Pertemuan 12 Optimalisasi sistem pengaturan dan Pole Placement Matakuliah: H0142/Sistem Pengaturan Lanjut Tahun : 2005 Versi : <<versi/revisi>> Pertemuan 12 Optimalisasi sistem pengaturan dan Pole Placement

dapat Menyimpulkan sistem yang observable maupun controllable Learning Outcomes Pada akhir pertemuan ini, diharapkan mahasiswa akan mampu : dapat Menyimpulkan sistem yang observable maupun controllable

Konsep Pole placement dan merancang control system Outline Materi Konsep Pole placement dan merancang control system Pengenalan Desain observer (estimator), Controllability, observatibility

<<ISI>> Pole Placement & Disain Observer (Estimator) Pada teknik Pole placement letak akar pada bidang z dipilih sehingga seluruh akar terletak pada lokasi yang diinginkan dengan cara men catubalik semua state variabel. Secara praktis pengukuran seluruh variabel adalah tidak mungkin, karena itu perlu meng estimasi state variabel yang tidak terukur. Estimasi tersebut dapat dilakukan dengan menggunakan state observer(estimator).

Ada 2 pendekatan yang dilakukan pada teknik Pole placement yaitu: Jika seluruh state variable dapat terukur untuk di catu balik(feedback). Dilakukan disain state observer untuk mengestimasi state variable (atau hanya variable yang tidak terukur) yang memerlukan feedback pada disain/analisis. Letak (lokasi) dari pole sistem pengaturan lup tertutup mempunyai dampak langsung terhadap karakteristik time response yaitu : ·       Rise time ·       Settling time ·       Osilasi transient

Pemilihan Penguatan State-Feedback: Pada state feedback hubungan u , x ,dan K adalah sbb: dinamika sistem lup tertutup menjadi: ·       dan pole2 sistem lup tertutup adalah eigenvalue dari   A-BK. Dengan menetapkan pole pada lokasi bidang kompleks yang diinginkan ( jika nilai (A,B) adalah controllable) kemudian nilai K dihitung .  

Disain State Observer (Estimator) Jika seluruh keadaan x tidak diukur, maka kita tak dapat mengimplementasikan Hukum State-feedback yaitu u = - K x . Namun kita dapat menerka suatu state estimate  sedemikian sehingga hukum u = - K  yang mampu mempertahankan sifat2 dari sistem lup tertutupnya dan penetapan pole tersebut. Ini dapat dicapai dengan mendisain suatu state estimator (observer) dengan bentuk sbb: Pole dari observer(estimator) adalah eigenvalue dari , yang dapat ditetapkan sembarang ·       dengan pemilihan penguatan matrik estimator L ; jika (C, A) adalah observable.

Sebagai gambaran pada sistem perlu diperhatikan bahwa dinamika estimator(observer) harus lebih cepat daripada dinamika kontroler (yang eigenvalue nya adalah ) Mencari penguatan matriks estimator L dilakukan dengan pertimbangan bahwa A dan C berturut-turut adalah matrik keadaan dan matrik output, serta untuk ini perlu suatu vektor lain yaitu q yang berisi pole lup tertutup untuk observer(estimator). Dengan mengganti x dengan variabel estimasinya yaitu  dalam u =-K x maka dihasilkan ouput dinamis dengan kompensator feedback.

Pole placement pada sistem pengaturan dikenal 2 konsep yaitu: controllability observability Controllability berkaitan dengan persoalan apakah dimungkinkan untuk mengendalikan sistem dari titik asal tertentu sampai ke keadaan sebarang Observability berkaitan dengan persoalan untuk menentukan keadaan dinamis sistem dari observasi outputdan vektor kendali dalam jumlah periode sampling yang terbatas .

Controllability ·       Sistem dikatakan completely state controllable jika dimungkinkan untuk mengalihkan (transfer) state awal sebarang ke setiap state yang diinginkan. Solusi dari persoalan sistem pengaturan optimal tidak dapat diperoleh jika sistem nya tidak controllable Suatu sistem diskret didefinisikan sbb: matriks controllability dituliskan sebagai: berdimensi n sistem controllable jika rank dari matriks = n

Persamaan keadaan sistem diskret: pers output: matriks observability:   matriks observability: tanda * menunjukkan transpose conjugate. Jika matriks C dan G adalah matriks yg riil maka tanda * diganti dengan tanda transpose T. Agar sistem observable maka rank dari matriks Gambaran sistem yang completelly observable maupun not completelly observable dapat dilihat di example 6-3 hal 391 (Ogata , Discrete Time control System)

Disain dengan Pole Placement Jika semua state variable dapat terukur dan dapat diperoleh sebagai feedback, maka sistem dengan karakteristik yang diinginkan dapat didisain dengan memindahkan letak akar persamaan karakteristik dengan cara state feedback melalui state feedback gain matrix.   Ada bbeberapa cara / metode diantaranya : 1.   metode transformasi matriks T 2.   metode Ackermann (lihat Ogata hal 402-420)

Akar2 persamaan karakteristik mula2 a1=1 dan a2=0.16 contoh:   maka Akar2 persamaan karakteristik mula2 a1=1 dan a2=0.16 .

Jika diinginkan akar yang baru yaitu z = 0.5 + j 0.5 dan z = 0.5 – j 0.5 maka perlu dibuat matiks controllability sbb: yang mempunyai rank2 artinya sistem adalah completelly state controllable , jadi penempatan pole dapat dilakukan Persamaan karakteristik sistem yang diinginkan adalah:   Koefisien pers karakteristiknya adalah: α1 = -1 dan α2 =0.5

K adalah gain feedback matrix yg dicari Metode transformasi maka K1=0.34 dan K2= -2 K adalah gain feedback matrix yg dicari

Metode Ackermann K adalah gain feedback matrix yg dicari

Penutup Pole placement dapat dipisahkan dalam 2 tahap Tahap 1: disain dengan anggapan bahwa seluruh state variable tersedia untuk digunakan sebagai feedback Tahap 2: Jika tidak semua state variable dapat diperoleh maka Disain dengan menggunakan state observer yang akan mengestimasi seluruh state variable