Diferensial Parsial Pertemuan 7 Matakuliah : K0352/Matematika Bisnis Tahun : 2008 Diferensial Parsial Pertemuan 7
Learning Outcomes Pada akhir pertemuan ini, mahasiswa diharapkan akan mampu : Mahasiswa dapat Menyesuaikan kidah diferensial terhadap fungsi majemuk Bina Nusantara
Outline Materi Kaidah Diferensial Fungsi Majemuk Bina Nusantara
Fungsi majemuk (1) Suatu fungsi yang mengandung variabel bebas lebih dari satu disebut dengan fungsi multivariat. Contoh z = f (x, y) = ax + bxy + cy z = Variabel terikat x, y = Varibel bebas Bina Nusantara
Diferensial Parsial (1) Diferensial sebuah fungsi multivariat terhadap hanya pada satu variabel bebas, sedangkan variabel bebas lain diasumsikan tidak berubah atau konstan disebut dengan diferensial parsial. Misalkan z = f (x,y), disini z sebagai variabel terikat , x dan y sebagai variabel bebas. Bina Nusantara
Diferensial Parsial (2) Apabila y dianggap tetap, z merupakan fungsi yang tergantung hanya pada x, oleh karena itu turunan parsial z terhadap x dapat ditentukan dan dilambangkan sebagai Bina Nusantara
Diferensial Parsial (3) Dengan cara yang sama apabila x dianggap tetap maka turunan parsial z terhadap y Bina Nusantara
Diferensial Parsial (4) Contoh: Z = 3x2 + 4xy - 10y2 maka Zx = 6x + 4y ( disini y dianggap tetap) Zy = 4x – 20y (disini x dianggap tetap Pada umumnya turunan parsial dari suatu fungsi Z = f (x , y) adalah fungsi dari x dan y juga yang memungkinkan untuk diturunkan lagi ke arah x atau y. Bina Nusantara
Diferensial Parsial (5) Turunan ini apabila ada, dinamakan turunan parsial kedua, ketiga dst, ditulis Bina Nusantara
Diferensial Parsial (6) Contoh : Z = x4 - 4x2y + 8xy3 – y2 maka Zx = 4x3 – 8xy + 8y3 Zxx = 12x2 – 8y Zxy = - 8x + 24y2 Zy = -4x2 + 24 xy2 – 2y Zyy = 48 xy - 2 Zyx = -8x + 24 y2 Bina Nusantara
Nilai Ekstrim Nilai ekstrim dari sebuah fungsi yg mengandung lebih dari satu variabel bebas dpt dicari dgn pengujian sampai derivatif kedua-nya. Untuk y =f(x,z), mk y mencapai ekstrim jika y/x = 0 dan y/z = 0, sedang utk menentukan maks & min adalah : maks , bila ²y/x² < 0 & ²y/z² < 0 min, bila ²y/x² > 0 & ²y/z² > 0 Bina Nusantara
Nilai Ekstrim(2) 2y/x2 = - 2 <0 dan 2y/z2 = - 2 <0 Contoh : Selidiki jenis ekstrim dari fungsi y = -x² + 12x - z² + 10z – 45 ? y/x=-2x+12 ; y/z =-2z +10 -2x+12=0 x=6 -2z+10=0 z=5 y = -(6)²+12(6)-(5)²+10(5)-45 = 16 2y/x2 = - 2 <0 dan 2y/z2 = - 2 <0 Maka ttk ekstrim maksimum, ymaks = 16 Bina Nusantara
Optimisasi Bersyarat Suatu optimisasi dimana fungsi yang hendak dioptimumkan menghadapi suatu kendala (constraint). Perhitungan nilai ekstrim sebuah fungsi yg menghadapi kendala berupa sebuah fungsi lain, dapat diselesaikan dengan metoda : pengganda lagrange dan kuhn-tucker.. Bina Nusantara
Pengganda Lagrange Mis fungsi yg dioptimumkan z=f(x,y) dan syarat yg dipenuhi u=g(x,y) , maka fungsi Lagrangenya : F(x,y, ) = f(x,y) + g(x,y), nilai ekstrim dpt dicari dgn memformulasikan masing2 derivatif parsial pertamanya sama dgn nol. Fx(x,y, ) = fx + gx = 0 Fy(x,y, ) = fy + gy = 0; =pengganda lagrange = var. tak tentu. Bina Nusantara
F.Lagrange F = 2x + 2y + (x² + y² - 8) = 2x + 2y + x² + y² - 8 Contoh: Tentukan nilai ekstrim z dari fungsi z=2x+2y dgn syarat x² + y² = 8, & jenisnya? F.Lagrange F = 2x + 2y + (x² + y² - 8) = 2x + 2y + x² + y² - 8 Agar F ekstrim, F’ = 0, Fx =2 + 2 x = 0 = -1/x ………… a) Fy =2 + 2 y = 0 = -1/y ………… b) x² + y² = 8 y² + y² = 8 y² =4 y = -2 & 2 Dan x = -2 & 2 Shg z =2x+2y = -8 & 8. Bina Nusantara
Penyelidikan nilai ekstrim: Utk x=2 & y=2, =-1/2 Fxx = 2 = -1 <0 Fyy =2 = -1 <0 Maka ekstrim maksimum, dgn zmaks = 8 . Utk x=-2 & y=-2, =1/2 Fxx = 2 = 1>0 Fyy =2 = 1 >0 Maka ekstrim minimum, dgn zmin = -8 . Bina Nusantara
Metoda Kuhn-Tucker Adapun prosedurnya adalah : Z/x - (g/x) = 0 Z/y - (g/x) = 0 Uji :>0 berarti nilai x dan y yang mengoptimumkan persamaan berlaku juga untuk pertidaksamaan (binding). < 0, berarti fungsi kendala tidak mengikat ( non binding) = 0, maka lakukan pengujian terhadap nilai x dan y yang mengoptimumkan (tergantung tujuan apakah minimalisasi atau maximalisasi) Bina Nusantara