Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

UJI BEDA MEAN DUA SAMPEL Oleh : Setiyowati Rahardjo.

Presentasi serupa


Presentasi berjudul: "UJI BEDA MEAN DUA SAMPEL Oleh : Setiyowati Rahardjo."— Transcript presentasi:

1 UJI BEDA MEAN DUA SAMPEL Oleh : Setiyowati Rahardjo

2  Menguji perbedaan rata-rata antara kelompok I dan kelompok II  Perlu diperhatikan apakah dua data tersebut adalah dua kelompok yang independen atau dua kelompok yang dependen (berpasangan)  Data independen : bila data kelompok yang satu tidak tergantung dari data kelompok kedua, misalnya membandingkan mean tekanan darah sistolik orang desa dengan orang kota.  Data dependen/pasangan : bila kelompok data yang dibandingkan datanya saling mempunyai ketergantungan, misal Data BB sebelum dan sesudah mengikuti program diet Data BB sebelum dan sesudah mengikuti program diet

3 Uji t dependen (Paired Sampels T-Test)  Untuk menguji perbedaan mean antara dua kelompok data yang dependen.  Uji ini banyak digunakan untuk penelitian eksperimen. Syarat/asumsi yang harus dipenuhi :  Data berdistribusi normal/simetris  Kedua kelompok data dependen  Variabel yang dihubungkan berbentuk numerik untuk variabel dependen dan kategorik dengan hanya dua kelompok untuk variabel independen

4  Contoh kasus : Apakah ada perbedaan tingkat pengetahuan antara sebelum dan sesudah pelatihan  Hipotesa dalam Uji t dependen adalah: Bila kita nyatakan perbedaan sebenarnya pada populasi dengan :  = µ1 - µ2  = µ1 - µ2 Maka hipotesis dapat ditulis : Ho :  = 0 Ho :  = 0 Ha :   0

5  Rumus uji t d T = Sd_d /  n Sd_d /  n df = n - 1 d = rata-rata deviasi/selisih nilai sesudah dengan sebelum SD_d = standar deviasi dari nilai d/selisih sampel 1 dan sampel 2 Contoh : Seorang peneliti ingin mengetahui pengaruh pemberian tablet Fe terhadap kadar Hb pada ibu hamil. Sebanyak 10 ibu hamil diberi tablet Fe dan diukur kadar Hb sebelum dan sesudah pemberian Fe. Hasil pengukuran sbb :

6 Sebelum : 12,2 11,3 14,7 11,4 11,5 12,7 11,2 12,1 13,3 10,8 Sesudah : 13,0 13,4 16,0 13,6 14,0 13,8 13,5 13,8 15,5 13,2 Buktikan apakah ada perbedaan kadar Hb antara sebelum dan sesudah pemberian tablet Fe, dengan alpha 5% Buktikan apakah ada perbedaan kadar Hb antara sebelum dan sesudah pemberian tablet Fe, dengan alpha 5% Jawab : Hipotesis Ho :δ=0 (tdk ada perbedaan kadar Hb sebelum dan sesudah pemberian Fe) Ha : δ≠0 (ada perbedaan kadar Hb sebelum dan sesudah pemberian Fe) Perhitungan uji t : Sebelum : 12,2 11,3 14,7 11,4 11,5 12,7 11,2 12,1 13,3 10,8 Sesudah : 13,0 13,4 16,0 13,6 14,0 13,8 13,5 13,8 15,5 13,2 deviasi : 0,8 2,1 1,3 2,2 2,5 1,1 2,3 1,7 2,2 2,4 deviasi : 0,8 2,1 1,3 2,2 2,5 1,1 2,3 1,7 2,2 2,4 (jumlah deviasi = 18,6) (jumlah deviasi = 18,6)

7  rata-rata deviasi : 18,6/10 = 1,86  Standar deviasi dari nilai deviasinya (SD_d)=0,60 d 1,86 d 1,86 t = t = Sd_d /  n 0,60/√ 10 Sd_d /  n 0,60/√ 10 t = 9,80 t = 9,80 Kemudian dari nilai t tersebut dibandingkan dengan tabel t dengan df = n – 1 = 9 Kemudian dari nilai t tersebut dibandingkan dengan tabel t dengan df = n – 1 = ,383 1,833 2,262 3,250 -

8  Dari soal diatas didapat t=9,80, dan df=9 maka nilai t tabel adalah 2,26  Keputusan uji statistik t hitung ≥ t tabel sehingga Ho ditolak t hitung < t tabel maka Ho diterima Jadi secara statistik ada perbedaan kadar Hb antara sebelum dan sesudah diberi tablet Fe Jadi secara statistik ada perbedaan kadar Hb antara sebelum dan sesudah diberi tablet Fe

9 UJI t INDEPENDEN  Subjeknya berbeda. Mis : Responden orang kota & orang desa Syarat/asumsi yang harus dipenuhi :  Data berdistribusi normal/simetris  Kedua kelompok data independen  Variabel yang dihubungkan berbentuk numerik untuk variabel dependen dan kategorik dengan hanya dua kelompok untuk variabel independen.

10  Hipotesa dalam Uji t independen adalah: Dua sisi : Ho: µ1 = µ2 dan Ha: µ1  µ2Dua sisi : Ho: µ1 = µ2 dan Ha: µ1  µ2 Satu sisi : Ho: µ1 = µ2 dan Ha: µ1 > µ2Satu sisi : Ho: µ1 = µ2 dan Ha: µ1 > µ2 Ho: µ1 = µ2 dan Ha: µ1 < µ2 Ho: µ1 = µ2 dan Ha: µ1 < µ2 µ1 dan µ2 = rata-rata pada populasi 1 atau 2  Prinsip pengujian dua mean adalah melihat perbedaan variasi kedua kelompok data  Perlu informasi apakah varian kedua kelompok yang diuji sama atau tidak.  Bentuk varian kedua kelompok data akan berpengaruh pada nilai standar error yang pada akhirnya akan membedakan rumus pengujiannya

11 a. Uji Homogenitas Varian  Perhitungannya dengan menggunakan uji F : S 1 2 S 1 2 F = S 2 2 S 2 2 df1 = n1–1 dan df2 = n2–1 df1 = n1–1 dan df2 = n2–1  Varian yang lebih besar sebagai pembilang dan varian yang lebih kecil sebagai penyebut F hitung ≥ F tabel maka Ho ditolak (varian beda) F hitung ≥ F tabel maka Ho ditolak (varian beda) F hitung < F tabel maka Ho gagal ditolak (varian sama) F hitung < F tabel maka Ho gagal ditolak (varian sama)

12 Uji Untuk Varian Sama x 1 – x 2 x 1 – x 2 t = t = Sp (1/n 1 + 1/n 2 ) Sp (1/n 1 + 1/n 2 ) (n 1 – 1) S (n 2 – 1) S 2 2 (n 1 – 1) S (n 2 – 1) S 2 2 Sp = Sp = n 1 + n 2 – 2 n 1 + n 2 – 2 df = n 1 + n 2 – 2 df = n 1 + n 2 – 2

13 dimana : x 1 atau x 2 = rata rata sampel kelompok 1 atau 2 n 1 atau n 2 = jumlah sampel kelompok 1 atau 2 S 1 atau S 2 = standard deviasi sampel kelompok 1 atau 2 df= degree of freedom (derajat kebebasan) df= degree of freedom (derajat kebebasan) Sp= varian populasi Sp= varian populasi

14 Uji Untuk Varian Berbeda x 1 – x 2 x 1 – x 2 t = t = S 1 2 / n 1 + S 2 2 / n 2 S 1 2 / n 1 + S 2 2 / n 2 [ (S 1 2 / n 1 ) + (S 2 2 / n 2 ) ] 2 [ (S 1 2 / n 1 ) + (S 2 2 / n 2 ) ] 2 df = [ (S 1 2 / n 1 ) 2 / (n 1 – 1) ] + [ (S 2 2 / n 2 ) 2 / (n 2 – 1) ] [ (S 1 2 / n 1 ) 2 / (n 1 – 1) ] + [ (S 2 2 / n 2 ) 2 / (n 2 – 1) ]

15  Contoh : Seorang peneliti ingin menguji apakah ada perbedaan nilai biostatistik antara mahasiswa dan mahasiswi. Dengan mengambil 10 mahasiswa didapat rata-rata nilainya 70 dengan standar deviasi 5, mahasiswi diambil 9 orang dan rata-rata nilainya 68 dengan standar deviasi 6. Ujilah dengan alpha 5% apakah ada perbedaan nilai ? Seorang peneliti ingin menguji apakah ada perbedaan nilai biostatistik antara mahasiswa dan mahasiswi. Dengan mengambil 10 mahasiswa didapat rata-rata nilainya 70 dengan standar deviasi 5, mahasiswi diambil 9 orang dan rata-rata nilainya 68 dengan standar deviasi 6. Ujilah dengan alpha 5% apakah ada perbedaan nilai ?

16 Penyelesaian :  Pertama lakukan uji homogenitas varian Ho : σ 1 2 = σ 1 2 (varian nilai mahaswa sama dengan varian nilai mahasiswi) (varian nilai mahaswa sama dengan varian nilai mahasiswi) Ha : σ 1 2 ≠ σ 1 2 (varian nilai mahaswa tidak sama dengan varian nilai mahasiswi) (varian nilai mahaswa tidak sama dengan varian nilai mahasiswi) UJI F S1 2 S1 2 F = S2 2 S2 2

17  F = (6) 2 / (5) 2 = 1,44 df : numerator (pembilang) = 9 – 1 = 8 df : numerator (pembilang) = 9 – 1 = 8 denumerator(penyebut) = 10 – 1 = 9 denumerator(penyebut) = 10 – 1 = 9 Kita lihat tabel F pada alpha 0.05 Kita lihat tabel F pada alpha 0.05 Numerator Denumera tor ,23

18  F hitung (1,44) < F tabel (3,23)  Ho gagal ditolak varian sama UJI BEDA MEAN Ho : μ a = µ I (rata-rata nilai mahasiswa sama dengan rata-rata nilai mahasiswi) Ho : μ a ≠ µ I (rata-rata nilai mahasiswa tidak sama dengan rata-rata nilai mahasiswi) x 1 – x 2 x 1 – x 2 t = t = Sp (1/n 1 + 1/n 2 ) Sp (1/n 1 + 1/n 2 )

19 68 – – 70 t = t = Sp (1/9 + 1/10) Sp (1/9 + 1/10) Sp = 5,49 Sp = 5,49 68 – – 70 t = t = ,49 (1/9 + 1/10) 5,49 (1/9 + 1/10) t = - 0,79 t = - 0,79 df = – 2 = 17 df = – 2 = 17 (kita cari nilai tabel t) (kita cari nilai tabel t)

20 t = 0,79 dengan df = 17 df ,742,11

21  T hitung < t tabel maka Ho gagal ditolak maka Ho gagal ditolak Jadi, tidak ada perbedaan yang bermakna nilai statistik antara mahasiswa dengan mahasiswi Jadi, tidak ada perbedaan yang bermakna nilai statistik antara mahasiswa dengan mahasiswi

22 Tingkat Signifikansi untuk tes satu sisi 0,400,250,100,050,0250,010,0050,00250,0010,0005 Tingkat Signifikansi untuk tes dua sisi Df0,800,500,200,100,050,020,010,0050,0020,001 10,3251,0003,0786,31412,70631,82163,657127,32318,31636,62 20,2890,8161,8862,9204,3036,9659,92514,08922,32731,598 30,2770,7651,6382,3533,1824,5415,8417,45310,21412,924 40,2710,7411,5332,1322,7763,7474,6045,5987,1738,610 50,2670,7271,4762,0152,5713,3654,0324,7735,8936,869 60,2650,7181,4401,9432,4473,1433,7074,3175,2085,959 70,2630,7111,4151,8952,3652,9983,4994,0294,7855,408 80,2620,7061,3971,8602,3062,8963,3553,8334,5015,041 90,2610,7031,3831,8332,2622,8213,2503,6904,2974, ,2600,7001,3721,8122,2282,7643,1693,5814,1444, ,2600,6971,3631,7962,2012,7183,1063,4974,0254, ,2590,6951,3561,7822,1792,6813,0553,4283,9304, ,2590,6941,3501,7712,1602,6503,0123,3723,8524, ,2580,6921,3451,7612,1452,6242,9773,3263,7874, ,2580,6911,3411,7532,1312,6022,9473,2863,7334, ,2580,6901,3371,7462,1202,5832,9213,2523,6864, ,2570,6891,3331,7402,1102,5672,8983,2223,6463, ,2570,6881,3301,7342,1012,5522,8783,1973,6103, ,2570,6881,3281,7292,0932,5392,8613,1743,5793, ,2570,6871,3251,7252,0862,5282,8453,1533,5523, ,2570,6861,3231,7212,0802,5182,8313,1353,5273, ,2560,6861,3211,7172,0742,5082,8193,1193,5053, ,2560,6851,3191,7142,0692,5002,8073,1043,4853, ,2560,6851,3181,7112,0642,4922,7973,0913,4673, ,2560,6841,3161,7082,0602,4852,7873,0783,4503, ,2560,6841,3151,7062,0562,4792,7793,0673,4353, ,2560,6841,3141,7032,0522,4732,7713,0573,4213, ,2560,6831,3131,7012,0482,4672,7633,0473,4083, ,2560,6831,3111,6992,0452,4622,7563,0383,3963, ,2560,6831,3101,6972,0422,4572,7503,0303,3853, ,2550,6811,3031,6842,0212,4232,7042,9713,3073, ,2540,6791,2961,6712,0002,3902,6602,9153,2323, ,2540,6771,2891,6581,9802,3582,6172,8603,1603,373  0,2530,6741,2821,6451,9602,3262,5762,8073,0903,291

23 LATIHAN : Sebuah penelitian ingin mengetahui hubungan antara pemberian pelatihan dengan peningkatan pengetahuan ibu. Delapan ibu diambil sebagai sampel. Sebelum dan setelah pelatihan ibu-ibu tersebut diukur skor pengetahuannya dengan hasil sbb : Sebuah penelitian ingin mengetahui hubungan antara pemberian pelatihan dengan peningkatan pengetahuan ibu. Delapan ibu diambil sebagai sampel. Sebelum dan setelah pelatihan ibu-ibu tersebut diukur skor pengetahuannya dengan hasil sbb : Sebelum : Sebelum : Sesudah : Ujilah dengan alpha 5% apakah pemberian pelatihan dapat meningkatkan nilai skor pengetahun ibu Ujilah dengan alpha 5% apakah pemberian pelatihan dapat meningkatkan nilai skor pengetahun ibu

24 Sebuah penelitian ingin mengetahui hubungan status merokok ibu hamil dengan BB bayi yang dilahirkan. Sebagai sampel diambil 20 ibu hamil yang tidak merokok dan 10 ibu hamil yang merokok. Hasil penelitian didapat ibu yang merokok melahirkan bayi dengan rata- rata BB 2,9 kg dengan standar deviasi 0,4 kg. Ibu yang tidak merokok melahirkan bayi dengan rata-rata BB 3,2 kg dan standar deviasi 0,5 kg. Ujilah apakah ibu yang merokok akan melahirkan bayi dengan berat yang lebih rendah dibandingkan ibu yang tidak merokok, alpha 5% ? Sebuah penelitian ingin mengetahui hubungan status merokok ibu hamil dengan BB bayi yang dilahirkan. Sebagai sampel diambil 20 ibu hamil yang tidak merokok dan 10 ibu hamil yang merokok. Hasil penelitian didapat ibu yang merokok melahirkan bayi dengan rata- rata BB 2,9 kg dengan standar deviasi 0,4 kg. Ibu yang tidak merokok melahirkan bayi dengan rata-rata BB 3,2 kg dan standar deviasi 0,5 kg. Ujilah apakah ibu yang merokok akan melahirkan bayi dengan berat yang lebih rendah dibandingkan ibu yang tidak merokok, alpha 5% ?


Download ppt "UJI BEDA MEAN DUA SAMPEL Oleh : Setiyowati Rahardjo."

Presentasi serupa


Iklan oleh Google