Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

PERSAMAAN dan PERTIDAKSAMAAN Bentuk umum : ax 2 + bx + c = 0 Cara menyelesaikan: 1.Memfaktorkan 2.Melengkapkan kuadrat sempurna 3.Menggunakan rumus kuadrat.

Presentasi serupa


Presentasi berjudul: "PERSAMAAN dan PERTIDAKSAMAAN Bentuk umum : ax 2 + bx + c = 0 Cara menyelesaikan: 1.Memfaktorkan 2.Melengkapkan kuadrat sempurna 3.Menggunakan rumus kuadrat."— Transcript presentasi:

1 PERSAMAAN dan PERTIDAKSAMAAN Bentuk umum : ax 2 + bx + c = 0 Cara menyelesaikan: 1.Memfaktorkan 2.Melengkapkan kuadrat sempurna 3.Menggunakan rumus kuadrat (rumus abc) 4.Menggambarkan sketsa grafik fungsi f : ax 2 + bx + c = 0 Persamaan Kuadrat

2 Contoh : Tentukanlah penyelesaian dari persamaan kuadrat berikut: 1.x 2 + 7x + 12 = 0 2.x 2 – 4x + 3 = 0 3.x 2 + 6x + 3 = 0 Contoh : Tentukanlah penyelesaian dari persamaan kuadrat berikut: 1.x 2 + 7x + 12 = 0 2.x 2 – 4x + 3 = 0 3.x 2 + 6x + 3 = 0 Jawab: 1. x 2 + 7x + 12 = 0 ↔ (x +4) ( x+3) = 0 ↔ x = -4 atau x = -3 Jawab: 1. x 2 + 7x + 12 = 0 ↔ (x +4) ( x+3) = 0 ↔ x = -4 atau x = -3

3 2. x 2 – 4x + 3 = 0 ↔ (x-1) (x-3) = 0 ↔ x = 1 atau x = 3 3. x 2 + 6x + 3 = 0

4 Pertidaksamaan Pertidaksamaan adalah hubungan yang ditandai dengan adanya notasi, ≤, ≥ dan ≠. Beberapa cara penulisan pertidaksamaan dapat dilihat seperti tabel berikut ini.

5

6 Pertidaksamaan Kuadrat Rumus Dasar: 1.Jika a< b dan (x-a) (x-b)< 0, maka a

7 Contoh: Tentukanlah himpunan penyelesaian dari pertidaksamaan berikut ini. 1.x 2 – 10x + 16 < 0 2.x 2 – 3x – 10 ≥ 0 Jawab: 1.x 2 – 10x + 16 < 0 Nilai nol dari bagian kiri pertidaksamaan x 2 – 10x + 16=0 (x-8)(x-2) =0 X= 8 atau x = Hp= {x/ 2 < x < 8}

8 Jawab: x 2 – 3x – 10 ≥ 0 Nilai nol dari bagian kiri pertidaksamaan x 2 – 3x-10=0 (x- 5)(x+2) =0 x= 5 atau x = Hp= {x/ x ≤ -2 atau x ≥ 5}

9 Persamaan Nilai Mutlak Defenisi: Untuk tiap bilangan riil x, maka nilai mutlak x ditentukan sebagai berikut:

10 Sifat-sifat nilai mutlak

11 Contoh: Carilah penyelesaian dari persamaan nilai mutlak berikut ini. 1.| x – 1 | = 2 2.| 2x – 4 |= 4 Jawab: 1. | x – 1 | = 2 (x-1) 2 = 2 2 x 2 -2x+ 1= 4 (x+1)(x-3)=0 x 1 = -1 atau x 2 = 3 2. | 2x – 4 |= 4 (2x-4) 2 = 4 2 4x 2 -16x + 16 = 16 4x 2 -16x = 0 4x(x-4) = 0 x 1 = 0 atau x 2 =4

12 Pertidaksamaan Nilai mutlak Carilah himpunan penyelesaian dari pertidaksamaan berikut ini. 1.|x-3| < 4 2.|2x+1| ≥ |x – 2| Jawab: 1. |x-3| < 4 dengan menggunakan sifat (i) -4 < x – 3 < < x < < x< 7 Hp= {x/ -1 < x < 7, x R}

13 2. |2x+1| ≥ |x – 2| (2x+1) 2 ≥ (x-2) 2 4x 2 + 4x+1 ≥ x 2 - 4x+4 3x 2 + 8x-3 ≥ 0 (x+3)(3x-1) ≥ 0 x ≤ -3 atau x ≥ 1/3 Hp = {x/ x ≤ -3 atau x ≥ 1/3, x R}


Download ppt "PERSAMAAN dan PERTIDAKSAMAAN Bentuk umum : ax 2 + bx + c = 0 Cara menyelesaikan: 1.Memfaktorkan 2.Melengkapkan kuadrat sempurna 3.Menggunakan rumus kuadrat."

Presentasi serupa


Iklan oleh Google