Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

Penulisan Dalam Bentuk Matriks Eliminasi Gauss Sistem Persamaan Linier Oleh: Nur Aini S., M.Si.

Presentasi serupa


Presentasi berjudul: "Penulisan Dalam Bentuk Matriks Eliminasi Gauss Sistem Persamaan Linier Oleh: Nur Aini S., M.Si."— Transcript presentasi:

1 Penulisan Dalam Bentuk Matriks Eliminasi Gauss Sistem Persamaan Linier Oleh: Nur Aini S., M.Si

2  Fungsi Linier :  Persamaan Linier : Adalah suatu persamaan dimana variabel yang terlibat berderajat paling tinggi satu. Contoh : → persamaan linier 1 variabel → persamaan linier 2 variabel → persamaan linier 3 variabel  Sistem Persamaan Linier : Jadi, jika kita mempunyai beberapa persamaan linier, maka sekumpulan persamaan linier itu disebut Sistem Persamaan Linier (SPL).

3 CARA MENYELESAIKAN SPL Metode Substitusi Metode Eliminasi Metode Gauss Metode Gauss – Jordan Metode Invers Matriks

4 Contoh : Dengan metode eliminasi dan substitusi, maka diperoleh : dan SPL Mempunyai penyelesaian disebut KONSISTEN Tidak mempunyai penyelesaian disebut TIDAK KONSISTEN TUNGGAL BANYAK Jadi solusi dari SPL tersebut adalah : dan SPL

5 ILUSTRASI GRAFIK SPL 2 persamaan 2 variabel: Masing-masing pers berupa garis lurus. Penyelesaiannya adalah titik potong kedua garis ini. kedua garis sejajar kedua garis berpotongan kedua garis berhimpitan

6 Solusi SPL Menggunakan Matriks Bentuk umum SPL: Dapat disajikan dalam bentuk matriks: atau Jika seluruh b bernilai nol maka sistem persamaan tersebut disebut Sistem Persamaan Linier Homogen. Sistem diatas disebut dengan Sistem Persamaan Linier Non Homogen

7 Matriks Diperbesar Ax = b Matriks diperbesar (Augmented Matrices) SPL dibentuk Matriks eselon baris tereduksi diubah

8 OPERASI BARIS ELEMENTER (OBE) Adalah suatu operasi yang digunakan untuk menyelesaikan soal SPL. Operasi tersebut antara lain:  Mengalikan suatu baris dengan konstanta tidak nol  Menukar letak dari dua baris matriks  Mengganti suatu baris dengan hasil penjumlahan atau pengurangan baris dengan k kali atau kelipatan baris yang lain.

9 Contoh SPL Dan seterusnya

10 BENTUK ECHELON-BARIS Untuk dapat mencapai bentuk ini maka syaratnya adalah sbb: a. Jika suatu baris tidak semua nol, maka bilangan pertama yang tidak nol adalah 1 yang kemudian disebut dengan 1 utama b. 1 utama baris berikutnya berada di kanan 1 utama baris di atasnya c. Jika memuat baris-baris nol maka semuanya terletak di bagian bawah matriks. CONTOH bentuk echelon-baris:,, CONTOH bentuk echelon-baris tereduksi:,,,

11 Bentuk umum echelon-baris Bentuk umum echelon-baris tereduksi Ket: lambang ∗ dapat diisi bilangan real sebarang. Ket: lambang ∗ dapat diisi bilangan real sebarang.

12

13 Penyelesaian SPL Dengan Metode Gauss Adalah suatu cara mengoperasikan nilai-nilai di dalam matriks sehingga menjadi matriks yang lebih sederhana yaitu matriks bentuk eselon-baris, selanjutnya dilakukan substitusi balik untuk mendapatkan nilai dari variabel-variabel tersebut.

14 Contoh : SPL Proses OBE berhenti karena sudah berbentuk eselon-baris Dari bentuk terakhir (eselon-baris), diperoleh : Jadi solusi untuk SPL tersebut adalah :,,

15 Penyelesaian SPL Dengan Metode Gauss - Jordan Mengubah matriks menjadi bentuk eselon-baris tereduksi. SPL Contoh :

16 Lanjutan …….. Bentuk eselon-baris tereduksi Dari bentuk terakhir (eselon-baris tereduksi), diperoleh :

17 Penyelesaian SPL dengan Invers Matriks Jika A adalah suatu matriks n x n yang dapat dibalik / mempunyai invers, maka untuk setiap matriks b, n x 1, sistem persamaan Ax=b memiliki tepat satu solusi, yaitu Contoh:

18 Selanjutnya dapat dicari invers dari matriks A, yaitu:

19 CONTOH LATIHAN Selesaikan sistem persamaan linier (SPL) berikut ini dengan Metode Eliminasi Gauss/ gauss-jordan.!!! 1. 2.


Download ppt "Penulisan Dalam Bentuk Matriks Eliminasi Gauss Sistem Persamaan Linier Oleh: Nur Aini S., M.Si."

Presentasi serupa


Iklan oleh Google