Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

GEOMETRI ANALITIK RUANG YULVI ZAIKA. Jarak suatu titik ke titik asal (O) Jarak dari pusat sumbu O ketitik P (x, y, z) ialah : OP 2 = ( x 2 + y 2 + z 2.

Presentasi serupa


Presentasi berjudul: "GEOMETRI ANALITIK RUANG YULVI ZAIKA. Jarak suatu titik ke titik asal (O) Jarak dari pusat sumbu O ketitik P (x, y, z) ialah : OP 2 = ( x 2 + y 2 + z 2."— Transcript presentasi:

1 GEOMETRI ANALITIK RUANG YULVI ZAIKA

2 Jarak suatu titik ke titik asal (O) Jarak dari pusat sumbu O ketitik P (x, y, z) ialah : OP 2 = ( x 2 + y 2 + z 2 ) Jika OP = r maka : r 2 = ( x 2 + y 2 + z 2 )

3 SUDUT ARAH DAN COSINUS ARAH Jika  masing-masing sudut antara OP dgn sumbu-sumbu positif maka :  x = r cos  cos  x/r  y = r cos  atau cos  y/r   z  r cos  cos  z/r Dimana  disebut sudut sudut arah OP cos  cos  cos  disebut cosinus arah OP Dan cos 2  cos 2  cos 2 

4 X Y Z O P r   

5 BILANGAN ARAH GARIS cos  cos  cos  a : b : c, maka a,b,c disebut bilangan arah garis Jika diketahui a,b,c maka cos  = a / + (a 2 + b 2 + c 2 ) 1/2 cos  = b / + (a 2 + b 2 + c 2 ) 1/2 cos  = c / + (a 2 + b 2 + c 2 ) 1/2 Dimana tanda penyebut + atau – tergantung kuadran.

6 JARAK DARI DUA TITIK Jarak dari dua titik P1(x1,y1,z1) dan P2 (x2,y2,z2) adalah : d = [(x2-x1) 2 + (y2-y1) 2 + (z2-z1) 2 ] 1/2 Bilangan arah dari garis P1P2 adalah (x2-x1), (y2-y1) dan (z2-z1) Cosinus arah dari garis P1P2 adalah cos  x2-x1)/d, cos  y2-y1)/d, cos  z2-z1)/d

7 SUDUT ANTARA DUA GARIS Didefinisikan sebagai sudut antara dua garis berpotongan, dan masing masing // dgn satu dari garis yang diketahui. Jika OP1 dan OP2 garis melalui O dan // dua garis yg diketahui,  sudut antara grs itu maka : Cos  = (x1x2 + y1y2 + z1z2) /r1r2 Dimana : r1 2 = ( x1 2 + y1 2 + z1 2 ) r2 2 = ( x2 2 + y2 2 + z2 2 )

8 Karena X1 = r cos   X2 = r cos  maka cos  cos  cos  cos  cos  cos   cos   Jika dua grs //, maka :    Jika dua garis tegak lurus maka   cos  cos  cos  cos  cos   cos  

9

10 BIDANG DATAR Bentuk Umum Ax + By + Cz + D = 0 Dimana A, B, C tidak semuanya nol Persamaan Bidang datar melalui titik (xo, yo, zo) adalah : A(x-xo) + B(y-yo) + C(z-zo) = 0

11 GARIS TEGAK LURUS PADA BIDANG DATAR Syarat supaya garis g dgn blgn arah a, b,c tegak lurus pada bdg Ax + By + Cz + D = 0 ialah a/A = b/B = c/C Persamaan bidang datar melalui P1 (x1,y1,z1) tegak lurus pada garis dgn bilangan arah a,b,c adalah : a(x-x1) + b(y-y1) + c(z-z1) = 0

12 Contoh soal 1.Suatu bidang yang melalui titik (4,-3,1) dan tegak lurus dengan garis [2,5,6]. Tentukan persamaan bidang tersebut. 2.Garis yang melalui titik asal yang tegak lurus pada bidang tertentu memotong bidang tersebut pada titik (3,-1,5). Tentukan vektor garis tersebut dan persamaan bidangnya.

13 Garis potong Grs potong Bidang Vektor normal adalah vektor tegak lusrus bidang. Dua bidang dikatakan sejajar bila vektor normalnya sejajar. Dua vektor dikatakan sejajar bila komponen masing-masing vektor sebanding Dua bidang disebut salang tegak lurus bila vektor normal yang satu tegak lurus dengan yang lainnya.

14 DUA BIDANG SEJAJAR DAN TEGAK LURUS Dua Bidang A1x + B1y + C1z + D1 = 0 dan adalah A2x + B2y + C2z + D2 = 0 - // jika A1/A2 = B1/B2 = C1/C2 - Tegak lurus jika A1.A2 + B1.B2 + C1.C2 =0

15 BOLA Persamaan x 2 + y 2 + z 2 = R 2 adalah bola yg berpusat di O (0,0,0) dgn jari jari R. Persamaan (x-a) 2 + (y-b) 2 + (z-c) 2 = R 2 adalah bola yg berpusat di (a,b,c) dgn jari jari R. Persamaan x 2 + y 2 + z 2 +2Ax+2By+2Cz+D= R 2 adalah pers bola dgn titik pusat M (-A, -B, -C) Jari – jari R = ( A 2 + B 2 +C 2 – D ) 1/2 Jika R = 0 bola menjadi “bola titik” Jika A 2 + B 2 +C 2 – D > 0 adalah “ bola sejati ” Jika A 2 + B 2 +C 2 – D < 0 adalah “ bola khayal “

16 PERSAMAAN BIDANG SINGGUNG Jika Pers bola x 2 + y 2 + z 2 +2Ax+2By+2Cz+D= 0 atau B I = 0, Maka :. Pers bidang singgung dititik P(x1,y1,z1) yg terletak pada bola B I = 0 adalah x1x+y1y+z1z+A(x+x1)+B(y+y1)+C(z+z1)+ D =0 Untuk persamaan bola x 2 + y 2 + z 2 = R 2 maka persamaan bidang singgung / kutub adalah : x1x + y1y + z1z = R 2 - Untuk persamaan bola : (x-a) 2 + (y-b) 2 + (z-c) 2 = R 2 maka persamaan bidang singgung / kutub adalah : (x1–a)(x-a) + (y1-b)(y-b) + (z1-c)(z-c) = R 2

17 TABUNG DAN KERUCUT Bidang Tabung adalah bidang yang dilukiskan oleh garis-garis lurus yang arahnya sama sejajar (yg disbt garis lukis) dan selalu memotong sebuah garis lengkung tertentu (yg disbt garis lengkung arah

18 KERUCUT Bidang kerucut adalah bidang yg dilukiskan oleh garis lurus yang melalui sebuah titik tetap (yg disbt puncak kerucut) dan memotong sebuah garis lengkung tertentu (yg disbt grs lengkung arah)

19 BIDANG PUTARAN

20

21 5.Jk hiperbola : x 2 /a 2 - z 2 /b 2 = 1, y = 0 diputar sekeliling sb z maka terjadi (x 2 + y 2 )/ a 2 - z 2 /b 2 = 1 atau x 2 /a 2 + y 2 /a 2 - z 2 /b 2 = 1 ialah sebuah hiperbola putaran daun satu. 4. Jk ellips : x 2 /a 2 + z 2 /b 2 = 1, y = 0 diputar sekeliling sb z maka terjadi (x 2 + y 2 )/ a 2 + z 2 /b 2 = 1 atau x 2 /a 2 + y 2 /a 2 + z 2 /b 2 = 1 adalah sebuah elipsoida putaran 6. Jk hiperbola : x 2 /a 2 - z 2 /b 2 = -1, y = 0 diputar sekeliling sb z maka terjadi (x 2 + y 2 )/ a 2 - z 2 /b 2 = -1 atau - (x 2 /a 2 ) - y 2 /a 2 + z 2 /b 2 = 1 ialah sebuah hiperbola putaran daun dua. 7. Jk grs lurus x = a, y = 0 diputar sekeliling sb z, mk terjadi : (x 2 + y 2 ) 1/2 = a atau x 2 + y 2 = a 2 Ialah sebuah tabung silinder

22 BIDANG DERAJAT DUA 1.Elipsoida x 2 /a 2 + y 2 /b 2 + z 2 /c 2 = 1 Perpotonganya dgn bid koordinat berupa ellips. Pers bid singgung dititik P(x1,y1,z1) adalah x1x/a 2 + y1y/b 2 + z1z/c 2 = 1 2. Parabola Eliptik x 2 /a 2 + y 2 /b 2 = (2p/a 2 ) z 2 3. Perpotongan dgn bid z = k > 0 x 2 /a 2 + y 2 /b 2 = (2pk/a 2 ) z 2 berupa ellips - Perpotongan dgn bid y = 0 berupa parabola - Perpotongan dgn bid x= 0 berupa parabola -Persamaan bidang singgung dititik T(x1,Y1,z1) adalah : x1x/a 2 + y1y/b 2 = (p/a 2 ). (z+z1)

23 3. Hiperbola daun satu x 2 /a 2 + y 2 /b 2 - z 2 /c 2 = 1 - Perpotongan dgn bid koordinat : Dengan bid z = 0 berupa ellips Dengan bid x = 0 berupa hiperbola Dengan bid y = 0 berupa hiperbola Persamaan bidang singgung dititik P(x1,Y1,z1) adalah : x1x/a 2 + y1y/b 2 – z1z/c 2 = Hiperbola daun dua x 2 /a 2 - y 2 /b 2 - z 2 /c 2 = 1 - Perpotongan dgn bid koordinat : Dengan bid z = 0 berupa hiperbola Dengan bid x = 0 berupa elips khayal y 2 /b 2 + z 2 /c 2 = -1 Dengan bid y = 0 berupa hiperbola Dengan bid x = k dimana k>a adalah y 2 /b 2 + z 2 /c 2 = k 2 /a 2 -1 berupa ellips real (k 2 /a 2 -1) > 0 - Persamaan bidang singgung dititik P(x1,Y1,z1) adalah : x1x/a 2 - y1y/b 2 – z1z/c 2 = 1

24 5. Parabolaida hiperbolik x 2 /a 2 - y 2 /b 2 = 2pz/a 2 - Perpotongan dgn bid z = 0, y 2 = b 2 x 2 /a 2, y = bx/a,berupa dua grs lrs - Dengan bid z = k : x 2 /a 2 - y 2 /b 2 = 2pk/a 2 berupa hiperbola - Dengan bid y = 0 : x 2 = 2pz berupa parabola - Dengan bid x = 0 : y 2 = -b 2 2pz /a 2 berupa parabola - Persamaan bidang singgung dititik P(x1,y1,z1) adalah : x1x/a 2 - y1y/b 2 = p/a 2 (z+z1)


Download ppt "GEOMETRI ANALITIK RUANG YULVI ZAIKA. Jarak suatu titik ke titik asal (O) Jarak dari pusat sumbu O ketitik P (x, y, z) ialah : OP 2 = ( x 2 + y 2 + z 2."

Presentasi serupa


Iklan oleh Google