Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

1 Slide © 2005 Thomson/South-Western © 2004 Thomson/South-Western Peta Kendali ATRIBUT.

Presentasi serupa


Presentasi berjudul: "1 Slide © 2005 Thomson/South-Western © 2004 Thomson/South-Western Peta Kendali ATRIBUT."— Transcript presentasi:

1 1 Slide © 2005 Thomson/South-Western © 2004 Thomson/South-Western Peta Kendali ATRIBUT

2 2 Slide © 2005 Thomson/South-Western © 2004 Thomson/South-Western Control Charts R Chart Variables Charts Attributes Charts X Chart P C Continuous Numerical Data Categorical or Discrete Numerical Data Control Chart Types

3 3 Slide © 2005 Thomson/South-Western © 2004 Thomson/South-Western Konsep Atribut : karakteristik kualitas yg sesuai spesifikasi atau tidak Atribut : karakteristik kualitas yg sesuai spesifikasi atau tidak Atribut dipakai jk ada pengukuran yg tidak mungkin dilakukan ( tidak dibuat) spt : goresan,apel yg busuk, kesalahan warna, ada bagian yg hilang Atribut dipakai jk ada pengukuran yg tidak mungkin dilakukan ( tidak dibuat) spt : goresan,apel yg busuk, kesalahan warna, ada bagian yg hilang

4 4 Slide © 2005 Thomson/South-Western © 2004 Thomson/South-Western Kelebihan Dapat diterapkan di semua tgkt organisasi, separtemen, pusat kerja dan mesin operasional (tgk tertinggi – terendah) Dapat diterapkan di semua tgkt organisasi, separtemen, pusat kerja dan mesin operasional (tgk tertinggi – terendah) Membantu identifikasi permasalahan ( umum dan detil) Membantu identifikasi permasalahan ( umum dan detil)

5 5 Slide © 2005 Thomson/South-Western © 2004 Thomson/South-Western Kelemahan Tdk dapat diketahui sbrp jauh ketidaktepatan dg spesifikasi tsb Tdk dapat diketahui sbrp jauh ketidaktepatan dg spesifikasi tsb Ukuran sampel yg besar akan bermasalah jk pengukurannya mahal dan destruktif Ukuran sampel yg besar akan bermasalah jk pengukurannya mahal dan destruktif

6 6 Slide © 2005 Thomson/South-Western © 2004 Thomson/South-Western Tipe Peta Kendali ATRIBUT 1. Berdasar Distribusi BINOMIAL Kelompok pengendali unit ketidaksesuaian Kelompok pengendali unit ketidaksesuaian Dinyatakan dalam proporsi (%) Dinyatakan dalam proporsi (%) Menunjukkan proporsi ketidaksesuaian dalam sampel / sub kelompok Menunjukkan proporsi ketidaksesuaian dalam sampel / sub kelompok p dan np Chart

7 7 Slide © 2005 Thomson/South-Western © 2004 Thomson/South-Western 2. Berdasar Distribusi POISSON bagian ketidaksesuaian dalam unit inspeksi bagian ketidaksesuaian dalam unit inspeksi Berkaitan dg kombinasi ketidaksesuaian berdasar BOBOT yg dipengaruhi banyak sedikitnya ketidaksesuaian Berkaitan dg kombinasi ketidaksesuaian berdasar BOBOT yg dipengaruhi banyak sedikitnya ketidaksesuaian c- Chart dan u-chart

8 8 Slide © 2005 Thomson/South-Western © 2004 Thomson/South-Western Tahapan…. Menentukan sasaran  menentukan karakteristik kualitasnya (ketidaksesuaian dalam proporsi atau unit) Menentukan sasaran  menentukan karakteristik kualitasnya (ketidaksesuaian dalam proporsi atau unit) Memilih tipe peta kendali atribut Memilih tipe peta kendali atribut Banyaknya sampel dan observasi Banyaknya sampel dan observasi Pengumpulan data Pengumpulan data Penentuan BATAS KENDALI ( CL,UCL dan LCL) Penentuan BATAS KENDALI ( CL,UCL dan LCL) Interpretasi hasil (pola in/out of control) Interpretasi hasil (pola in/out of control) Revisi jika perlu Revisi jika perlu

9 9 Slide © 2005 Thomson/South-Western © 2004 Thomson/South-Western p/np/c Chart Structure UCL LCL Process Mean When in Control Center Line Time p/np/c Upper Control Limit Lower Control Limit

10 10 Slide © 2005 Thomson/South-Western © 2004 Thomson/South-Western Sampel SAMA… p chart Proporsi diketahui Garis Tengah = p¯

11 11 Slide © 2005 Thomson/South-Western © 2004 Thomson/South-Western Sampel SAMA… p chart Proporsi TIDAK diketahui m nomer sampel (vertikal) n ukuran sampel (horisontal) D bagian tidak sesuai p¯= ∑Di/(mn) Garis Tengah = p¯

12 12 Slide © 2005 Thomson/South-Western © 2004 Thomson/South-Western Sampel BEDA … a. Metode INDIVIDU  Batas Kendali tergantung ukuran sample tertentu shg BKA/BKB tidak berupa garis LURUS b. Metode RATA_RATA  Ukuran sampel RATA - RATA dg perbedaan tidak terlalu besar ( n¯ = ∑n/observasi) ( n¯ = ∑n/observasi) c. Peta Kendali TERSTANDAR dg GT=0 dan BK ± 3

13 13 Slide © 2005 Thomson/South-Western © 2004 Thomson/South-Western np Chart Note: If computed LCL is negative, set LCL = 0 assuming: np > 5 n (1- p ) > 5

14 14 Slide © 2005 Thomson/South-Western © 2004 Thomson/South-Western c-chart dan u-chart Mengetahui banyaknya kesalahan unit produk sbg sampel Mengetahui banyaknya kesalahan unit produk sbg sampel Sampel konstan  c-chart Sampel konstan  c-chart Sampel bervariasi  u-chart Sampel bervariasi  u-chart Aplikasi : bercak pd tembok, gelembung udara pd gelas, kesalahan pemasangan sekrup pd mobil Aplikasi : bercak pd tembok, gelembung udara pd gelas, kesalahan pemasangan sekrup pd mobil

15 15 Slide © 2005 Thomson/South-Western © 2004 Thomson/South-Western Number of defects per unit: c¯ = ∑ ci / n c¯ = ∑ ci / n C - chart

16 16 Slide © 2005 Thomson/South-Western © 2004 Thomson/South-Western U-chart u¯ = ∑ ci/n u¯ = ∑ ci/n n ¯ = ∑ ni/g n ¯ = ∑ ni/g g = banyaknya observasi g = banyaknya observasi Model Individu BPA-u = u¯ + 3 √ (u¯ /ni) BPA-u = u¯ + 3 √ (u¯ /ni) BPB-u = u¯ - 3 √ (u¯ /ni) BPB-u = u¯ - 3 √ (u¯ /ni) Model Rata-rata BPA-u = u¯ + 3 √ (u¯ /n¯) BPA-u = u¯ + 3 √ (u¯ /n¯) BPB-u = u¯ - 3 √ (u¯ /n¯) BPB-u = u¯ - 3 √ (u¯ /n¯)

17 17 Slide © 2005 Thomson/South-Western © 2004 Thomson/South-Western Warning Conditions….. Western Electric : 1. 1 titik diluar batas kendali ( 3σ) 2. 2 dr 3 titik berurutan diluar batas kend17li (2σ) 3. 4 dr 5 titik berurutan jauh dari GT (1σ) 4. 8 titik berurutan di satu sisi GT 5. Giliran panjang 7-8 titik 6. 1/beberapa titik dekat satu batas kendali 7. Pola data TAK RANDOM

18 18 Slide © 2005 Thomson/South-Western © 2004 Thomson/South-Western Patterns to Look for in Control Charts

19 19 Slide © 2005 Thomson/South-Western © 2004 Thomson/South-Western Twenty samples, each consisting of 250 checks, The number of defective checks found in the 20 samples are listed below. (proporsi tidak diketahui) Example………p-np chart $ Simon Says Augusta, ME 01227

20 20 Slide © 2005 Thomson/South-Western © 2004 Thomson/South-Western Note that the computed LCL is negative. Estimated p = 80/((20)(250)) = 80/5000 =.016 Control Limits For a p Chart $ Simon Says Augusta, ME 01227

21 21 Slide © 2005 Thomson/South-Western © 2004 Thomson/South-Western Tdk sesuai Proporsi Proporsi (4/250) = 0,016 (1/250) =0, (2/250) = 0,008 (8/250) = 0,032

22 22 Slide © 2005 Thomson/South-Western © 2004 Thomson/South-Western p Chart for Norwest Bank Sample Number Sample Proportion p UCL LCL Control Limits For a p Chart $ Simon Says Augusta, ME 01227

23 23 Slide © 2005 Thomson/South-Western © 2004 Thomson/South-Western Ukuran sampel sama = 50 ( p -chart) no Banyak produk cacat no

24 24 Slide © 2005 Thomson/South-Western © 2004 Thomson/South-Western n = n = m = m = D = D = p¯= p¯= BKA= BKA= BKB = BKB = Tabel proporsi untuk plot ke grafik Tabel proporsi untuk plot ke grafik

25 25 Slide © 2005 Thomson/South-Western © 2004 Thomson/South-Western n = 50 n = 50 m = 20 m = 20 D = 72 D = 72 p¯= 72 / (20.50) =.072 p¯= 72 / (20.50) =.072 p= √ (0,072)(0,928)/50 =.037 p= √ (0,072)(0,928)/50 =.037 BKA= 0, (0,037)= 0,183 BKA= 0, (0,037)= 0,183 BKB = 0, (0,037) = -0,039 = 0 BKB = 0, (0,037) = -0,039 = 0 Tabel proporsi untuk plot ke grafik Tabel proporsi untuk plot ke grafik

26 26 Slide © 2005 Thomson/South-Western © 2004 Thomson/South-Western Ukuran sampel sama = 50 ( p -chart) cacatproporsicacatproporsi (4/50 ) = 0,08 (2/50) = 0, (5/50) = 0,01 (10/50) = 0,20 (out)  revisi (4/50) = 0,08 (3/50) = 0,06

27 27 Slide © 2005 Thomson/South-Western © 2004 Thomson/South-Western Revisi p¯ = (72-10) / ( ) = 62/950 = 0,065 p¯ = (72-10) / ( ) = 62/950 = 0,065 p = √ (0,065)(0,935)/50 = 0,035 p = √ (0,065)(0,935)/50 = 0,035 BKA = 0, (0,035) = 0.17 BKA = 0, (0,035) = 0.17 BKB = 0, (0,035) = -0,04 = 0 BKB = 0, (0,035) = -0,04 = 0 Grafiknya juga berubah Grafiknya juga berubah

28 28 Slide © 2005 Thomson/South-Western © 2004 Thomson/South-Western Ukuran sampel beda ( p chart) nosampel Produk cacat nosampel Jmlsampel4860JmlCacat341

29 29 Slide © 2005 Thomson/South-Western © 2004 Thomson/South-Western Metode Rata-rata Sampel rata-rata Sampel rata-rata n¯ = total sampel /observasi n¯ = total sampel /observasi = 4860/20 = 243 = 4860/20 = 243 p¯ = D/(n¯m) p¯ = D/(n¯m) = 341 / (243.20) = 0,07 (CL) = 341 / (243.20) = 0,07 (CL) p = √ (0,07(0,93))/243 = 0,0164 p = √ (0,07(0,93))/243 = 0,0164 BPAp = 0, (0,0164) = 0,119 BPAp = 0, (0,0164) = 0,119 BPBp = 0, (0,0164) = 0,021 BPBp = 0, (0,0164) = 0,021

30 30 Slide © 2005 Thomson/South-Western © 2004 Thomson/South-Western Metode Individu Sampel rata-rata Sampel rata-rata n¯ = total sampel /observasi n¯ = total sampel /observasi = 4860/20 = 243 = 4860/20 = 243 p ¯= D/(n¯m) p ¯= D/(n¯m) = 341 / (243.20) = 0,07 (CL) semua titik sama = 341 / (243.20) = 0,07 (CL) semua titik sama BP (obs-1) BP (obs-1) p = √ (0,07(0,93))/200 = 0,018 p = √ (0,07(0,93))/200 = 0,018 BPA = 0, (0,018) = 0,124 BPA = 0, (0,018) = 0,124 BPB = 0, (0,018) = 0,016……………….dst BPB = 0, (0,018) = 0,016……………….dst

31 31 Slide © 2005 Thomson/South-Western © 2004 Thomson/South-Western Tabel Proporsi untuk Grafik No observasi sampelcacatproporsi ,0700,0550,0850,067………………………………0,0950,0500,0550,067

32 32 Slide © 2005 Thomson/South-Western © 2004 Thomson/South-Western Example…c-chart no Byknya kesalahan no

33 33 Slide © 2005 Thomson/South-Western © 2004 Thomson/South-Western c¯ = ∑c/n = 152/20 = 7,6 c¯ = ∑c/n = 152/20 = 7,6 BPA c = (7, 6) + 3 (√7,6) = 15,87 BPA c = (7, 6) + 3 (√7,6) = 15,87 BPB c = (7, 6) - 3 (√7,6) = -0,67 = 0 BPB c = (7, 6) - 3 (√7,6) = -0,67 = 0

34 34 Slide © 2005 Thomson/South-Western © 2004 Thomson/South-Western Example…u-chart noSampelcacatnosampelcacat

35 35 Slide © 2005 Thomson/South-Western © 2004 Thomson/South-Western Metode Rata-rata Sampel Rata-rata Sampel Rata-rata u¯ = 192/415 = 0,462 (CL) u¯ = 192/415 = 0,462 (CL) n¯ = 415/20 = 20,75 n¯ = 415/20 = 20,75 BPAu = (0,462) + 3 √ (0,462/20,75) = 0,906 BPAu = (0,462) + 3 √ (0,462/20,75) = 0,906 BPBu = (0,462) - 3 √ (0,462/20,75) = 0,018 BPBu = (0,462) - 3 √ (0,462/20,75) = 0,018

36 36 Slide © 2005 Thomson/South-Western © 2004 Thomson/South-Western Metode Individu Sampel Rata-rata Sampel Rata-rata u¯ = 192/415 = 0,462 (CL) u¯ = 192/415 = 0,462 (CL) n¯ = 415/20 = 20,75 n¯ = 415/20 = 20,75 Batas Kendali Batas Kendali Observasi -1 Observasi -1 BPA-1 = (0,462) + 3 √ (0,462/20) = 0,916 BPA-1 = (0,462) + 3 √ (0,462/20) = 0,916 BPB-1 = (0,462) - 3 √ (0,462/20) = 0,008…….dst BPB-1 = (0,462) - 3 √ (0,462/20) = 0,008…….dst


Download ppt "1 Slide © 2005 Thomson/South-Western © 2004 Thomson/South-Western Peta Kendali ATRIBUT."

Presentasi serupa


Iklan oleh Google