Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

Network Model 1 DR Rahma Fitriani, S.Si., M.Sc., Riset Operasi 2011 Semester Genap 2011/2012.

Presentasi serupa


Presentasi berjudul: "Network Model 1 DR Rahma Fitriani, S.Si., M.Sc., Riset Operasi 2011 Semester Genap 2011/2012."— Transcript presentasi:

1 Network Model 1 DR Rahma Fitriani, S.Si., M.Sc., Riset Operasi 2011 Semester Genap 2011/2012

2 Shortest Path Problem Pengiriman dari titik ke titik Supply, transhipment (substation), dan demand nodes Shortest path problem – Biaya proportional dengan jarak – Masalah pemilihan jarak terpendek (biaya minimum)

3 Contoh: Sumber Tujuan

4 Algoritma Djikstra Check the file in MS words..

5

6 ∞∞ ∞ ∞∞ Distance label Temporary ={1, 2, 3, 4, 5, 6} Permanent={ }

7 ∞∞ ∞ ∞∞ Distance label Permanen Temporary ={2, 3, 4, 5, 6} Permanent={1 }

8 ∞∞ ∞ ∞∞ Distance label Permanen Temporary ={2, 3, 4, 5, 6} Permanent={1 }

9 ∞ ∞ 3∞ Temporary Distance label Permanen Temporary ={2, 3, 4, 5, 6} Permanent={1 }

10 ∞ ∞ 3∞ Temporary Distance label Permanen Temporary ={2, 4, 5, 6} Permanent={1, 3 }

11 ∞ ∞ 3∞ Temporary Distance label Permanen Temporary ={2, 4, 5, 6} Permanent={1, 3 }

12 ∞ ∞ 36 Temporary Distance label Permanen Temporary ={2, 4, 5, 6} Permanent={1, 3 }

13 ∞ ∞ 36 Temporary Distance label Permanen Temporary ={4, 5, 6} Permanent={1, 2,3 }

14 ∞ ∞ 36 Temporary Distance label Permanen Temporary ={4, 5, 6} Permanent={1, 2,3 }

15 ∞ 36 Temporary Distance label Permanen Temporary ={4, 5, 6} Permanent={1, 2,3 }

16 ∞ 36 Temporary Distance label Permanen Temporary ={4, 5, 6} Permanent={1, 2,3 }

17 ∞ 36 Temporary Distance label Permanen Temporary ={4, 6} Permanent={1, 2,3, 5 }

18 Temporary Distance label Permanen Temporary ={4, 6} Permanent={1, 2,3, 5 }

19 Temporary Distance label Permanen Temporary ={4, 6} Permanent={1, 2,3, 5 }

20 Temporary Distance label Permanen Temporary ={6} Permanent={1, 2,3, 4, 5 }

21 Min (9,8)=8 36 Temporary Distance label Permanen Temporary ={6} Permanent={1, 2,3, 4, 5 }

22 Temporary Distance label Permanen Temporary ={ } Permanent={1, 2,3, 4, 5, 6 }

23 Temporary Distance label Permanen Shortest path: 1 – 2 – 5 – 6

24 Shortest Path sebagai Transhipment Problem Transhipment problem dengan setiap demand dan supply sama dengan 1 Jalur yang tidak terdefinisi dikenai biaya besar Biaya nol untuk jalur dari node i ke node i

25 Cost23456Supply Demand

26 Model LP shortest path sbg transhipment problem

27 Solusi optimal Contoh: Sumber Tujuan Total distance (cost) = 8

28 Max Flow Problem Model network di mana kapasitas jalur diperhitungkan Tujuan: Memaksimumkan jumlah pengiriman dari source ke destination dengan kendala kapasitas setiap jalur

29 Contoh: dengan kapasitas setiap jalur S D a0 a0 jalur buatan untuk conservation flow, outflow = inflow

30 LP untuk max flow problem S D a0 See Excell Transhipme nt.xlsx Transhipme nt.xlsx

31 Solusi optimal max flow S D 2(1) 3(2) 3(0) 4(1) 1(1) 2(2) a0 x0xs1xs2x12x13x2dx3d Dari Excel


Download ppt "Network Model 1 DR Rahma Fitriani, S.Si., M.Sc., Riset Operasi 2011 Semester Genap 2011/2012."

Presentasi serupa


Iklan oleh Google