Upload presentasi
Presentasi sedang didownload. Silahkan tunggu
Diterbitkan olehHutama Firmansyah Telah diubah "10 tahun yang lalu
1
Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id all numbers have a pattern
2
Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id all patterns contain a message
3
Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id all messages reveal a destiny (number 23 movies)
4
Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id TIF 4001 aljabar linier
5
Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id Any question?
6
Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id BUDI DARMA SETIAWAN, S.Kom., M.CS s.budidarma @ub.ac.id WIBISONO SUKMO WARDHONO, ST, MT wibiwardhono @ub.ac.id Lecturer BISONWIBI
7
Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id wibi wardhono.lecture..ac.id Visit...
8
Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id refference’s keyword (s) Linear Algebra Aljabar Linier Aljabar Linier Elementer Matematika Teknik Aljabar Linier & Matriks Aljabar Linear
9
Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id refference’s keyword (s) Matriks Determinan Sistem Persamaan Linier Transformasi Linier Aljabar Linier & Matriks Vektor by subject Ruang 2 & Ruang 3 Ruang-ruang vektor Nilai & faktor Eigen
10
Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id 1 First sight... Pendahuluan Aljabar Linier
11
Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id 2 Matriks Invers
12
Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id 3 Pangkat Matriks, Matriks Elementer & Metode mencari A -1
13
Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id 4 kuis1 MATRIKS
14
Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id 5 Sistem Persamaan Linier Operasi Baris Elementer Eliminasi Gauss & Gauss-Jordan
15
Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id 6 - SPL (Lanjutan) - Determinan
16
Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id 7 Determinan (Lanjutan)
17
Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id 8 Ujian Tengah Semester
18
Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id 9 Vektor (Refreshing) Operasi Vektor di R2 & R3
19
Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id 10 Ruang-ruang Vektor
20
Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id 11 Ruang-ruang Vektor (lanjutan)
21
Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id 12 kuis2 VEKTOR
22
Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id 13 Transformasi Linier
23
Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id 14 Nilai & Vektor Eigen
24
Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id 15 kuis3 TransLin & Eigen
25
Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id 16 Ujian Akhir Semester
26
Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id N 1 = Kehadiran, Tugas & Keaktifan N 2 = Nilai Q1 N 3 = Nilai UTS N 4 = Nilai Q2 N 5 = Nilai Q3 N A = average ( N 1 : N 5 ) PENILAIAN
27
Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id START Read: N A N A > 80 ? END Nilai = “A” True False Write: Nilai Read: UAS N A > UAS ? NA = 0,8 N A + 0,2 UAS True False NA = 0,5 N A + 0,5 UAS Nilai NA
28
Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id Syarat Mutlak
29
Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id Matriks Komputasi Array
30
Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id Sekumpulan elemen berupa angka/ simbol yang tersusun dalam baris dan kolom Matriks pqrstuvwxpqrstuvwx
31
Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id pqrstuvwxpqrstuvwx Matriks A i jA i j jumlah baris jumlah kolom
32
Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id A Matriks A33A33 pqrstuvwxpqrstuvwx a11a12 a13a21a22 a23a31a32 a33a11a12 a13a21a22 a23a31a32 a33 Ordo Matriks: 3 x 3
33
Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id Matriks Berdasarkan ordonya
34
Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id Matriks Persegi Ordo Matriks: n x n 13471347 132695847132695847 15 4 8 3 12 7 910 11 116 6 14 5 213
35
Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id Matriks Kolom Ordo Matriks: n x 1 168168
36
Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id Matriks Baris Ordo Matriks: 1 x n 168168
37
Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id Matriks Tegak Ordo Matriks: m x n Untuk m > n 816527816527
38
Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id Matriks Datar Ordo Matriks: m x n Untuk m < n 281657281657
39
Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id Matriks Berdasarkan elemennya
40
Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id Matriks Diagonal Matriks Persegi dengan semua elemen bernilai 0 Kecuali unsur-unsur pada diagonal utama -100 040 007
41
Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id Matriks Segitiga Matriks Persegi dengan semua elemen bernilai 0 pada unsur-unsur di bawah/ di atas diagonal utama -1549 023-6 00-71 0008 7000 -2300 -4-160 9-518
42
Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id Matriks Skalar Matriks Persegi Dengan semua elemen bernilai sama pada diagonal utama 600060006600060006
43
Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id Matriks Simetri Matriks Persegi dengan elemen a mn = a nm 35-2 514 -24-6 a 11 = a 11 a 12 = a 21 a 22 = a 22 a 13 = a 31 a 32 = a 23 a 33 = a 33
44
Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id TRANSPOSE Matriks
45
Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id Matriks AijAij Transpose matriks A T = A ji 281657281657 268517268517
46
Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id Matriks Setangkup 35-2 514 -24-6 A = ATA = AT
47
Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id OPERASI Matriks
48
Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id Penjumlahan & Pengurangan Matriks A=A= a11a12 a13a21a22 a23a31a32 a33a11a12 a13a21a22 a23a31a32 a33 B=B= b11b12 b13b21b22 b23b31b32 b33b11b12 b13b21b22 b23b31b32 b33 Ordo matriks harus sama A+B : a ij +b ij A-B : a ij -b ij
49
Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id int i,j,m=3,n=3,a[m][n],b[m][n],c[m][n]; main() { for(i=0;i<m;i++) for(j=0;j<n;j++) { cin>>a[i][j]; cin>>b[i][j]; c[i][j]=a[i][j]+b[i][j]; } }
50
Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id Perkalian skalar dengan matriks A’=kA=A’=kA= ka11ka12 ka13ka21ka22 ka23ka31ka32 ka33ka11ka12 ka13ka21ka22 ka23ka31ka32 ka33
51
Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id Perkalian Matriks A32=A32= a11a12a21a22a31a32a11a12a21a22a31a32 B21=B21= b11b21b11b21 A ij dengan B jk menghasilkan matriks C ik C 31 = a 11 *b 11 + a 12 *b 21 a 21 *b 11 + a 22 *b 21 a 31 *b 11 + a 32 *b 21
52
Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id LATIHAN -2 8 10 3-1 4 6-5 7 A = 8 1 9 7-3 5 11 4 -2 B = Tentukan: 1. A+B T 2. 2A*B 3. Algoritma 2A T
Presentasi serupa
© 2024 SlidePlayer.info Inc.
All rights reserved.