Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

PENDUGAAN PARAMETER DARMANTO. PENDAHULUAN - 1 Statistika Inferensial → Terdiri atas metode untuk menarik kesimpulan atau memprediksi mengenai populasi.

Presentasi serupa


Presentasi berjudul: "PENDUGAAN PARAMETER DARMANTO. PENDAHULUAN - 1 Statistika Inferensial → Terdiri atas metode untuk menarik kesimpulan atau memprediksi mengenai populasi."— Transcript presentasi:

1 PENDUGAAN PARAMETER DARMANTO

2 PENDAHULUAN - 1 Statistika Inferensial → Terdiri atas metode untuk menarik kesimpulan atau memprediksi mengenai populasi → Dengan kata lain, menduga parameter (karakteristik populasi) berdasarkan data sampel. Dua metode pendugaan parameter: 1.Metode Klasik → Estimasi sepenuhnya berasal dari data sampel. 2.Metode Bayes → Estimasi tidak sepenuhnya berasal dari data sampel tapi juga melibatkan informasi awal tentang distribusi populasi.

3 PENDAHULUAN - 2 Statistika inferensial berkutat pada 2 hal: 1.Pendugaan parameter Seorang pengusaha yang hendak memasarkan produk barunya mungkin ingin mengestimasi proporsi sesungguhnya calon pembeli produk barunya dengan menanyakan pendapat sampel acak ukuran 100 calon pembeli. 2.Pengujian hipotesis Seorang ibu ingin menentukan apakah sabun cuci merek A lebih unggul dari merek B, dan setelah mengadakan pengujian secukupnya, si ibu dapat memutuskan apakah menerima atau menolak hipotesis. [Parameter tidak diestimasi, tapi mendapat keputusan yang benar mengenai hipotesis yang ditetapkan sebelumnya.]

4 PENDAHULUAN - 3 Metode estimasi: 1.Estimasi Titik  Parameter = → Nilai estimasi = or  Misal: 2.Estimasi Selang  Estimasi dari berupa  adl selang kepercayaan (1 ‒ α )100%  1 ‒ α adalah koefisien/taraf kepercayaan  α adalah taraf nyata atau tingkat signifikansi atau taraf kesalahan [Umumnya: 0.1; 0.05; 0.01]

5 ESTIMASI RATA-RATA PENDUGAAN PARAMETER

6 RATA-RATA 1 POPULASI ESTIMASI RATA-RATA

7 RATA-RATA 1 POP - 1 Pandang estimasi selang untuk μ, bila normal maka Ingat bahwa Dapat ditulis

8 RATA-RATA 1 POP - 2 Selang kepercayaan untuk μ jika σ diketahui dan n ≥ 30: Bila rata-rata sampel acak berukuran n dari suatu populasi dengan varians σ 2 yang diketahui, maka selang kepercayaan (1 ‒ α )100% untuk μ adalah Bila z α /2 menyatakan nilai z sehingga daerah di sebelah kanannya mempunyai luas α /2.

9 RATA-RATA 1 POP - 3 Didapat dua batas kepercayaan z z α /2 -z α /2 0 α /2 1 ‒ α /2

10 RATA-RATA 1 POP - 4 Contoh: Rata-rata IP sampel acak 36 mahasiswa tingkat S-1 adalah 2.6. Hitung selang kepercayaan 95% dan 99% untuk rata-rata IP semua mahasiswa S-1! Anggap bahwa standar deviasi populasinya 0.3. Solusi: Diketahui x-bar = 2.6; σ = 0.3; z = 1.96; z = ◦ Selang kepercayaan 95% untuk rata-rata IP semua mahasiswa S-I: ◦ Interpretasi: Dapat dipercaya sebesar 95% bahwa rata-rata IP semua mahasiswa S-1 antara 2.50 hingga 2.70

11 RATA-RATA 1 POP - 5 Selang kepercayaan 99% untuk rata-rata IP semua mahasiswa S-I: Interpretasi: Dengan tingkat kesalahan 1%, dapat dinyatakan bahwa rata-rata IP semua mahasiswa S-1 antara 2.47 hingga Perhatikan: galat

12 RATA-RATA 1 POP - 6 Teorema: Bila x-bar dipakai untuk menaksir μ maka dengan kepercayaan (1 ‒ α )100% galatnya akan lebih kecil dari. ◦ Pada contoh lalu, kita percaya 95% bahwa perbedaan rata-rata sampel (2.6) dengan rata-rata sesungguhnya ( μ ) kurang dari 0.1 dan percaya 99% bahwa perbedaan tersebut kurang dari Teorema: Bila x-bar dipakai untuk menaksir μ maka dengan kepercayaan (1 ‒ α )100% galatnya akan lebih kecil dari suatu bilangan g yang ditetapkan sebelumnya asal saja ukuran sampelnya adalah

13 RATA-RATA 1 POP - 6 Contoh: Berapa besar sampel yang diperlukan jika ingin percaya 95% bahwa estimasi untuk μ kurang dari 0.05? Diketahui standar deviasi populasi 0.3. Jadi, dengan kepercayaan 95% sampel acak ukuran 138 akan memberikan estimasi x-bar yang perbedaannya dengan μ kurang dari 0.05.

14 RATA-RATA 1 POP - 7 Seringkali varians populasi tidak diketahui dan harus diestimasi berdasarkan data sampel. Dist. Z → Dist. t-student

15 RATA-RATA 1 POP - 8 Contoh: Tujuh botol yang mirip masing-masing berisi asam sulfat 9.8; 10.2; 10.4; 9.8; 10.0; 10.2; dan 9.6 liter. Carilah selang kepercayaan 95% untuk rata-rata isi botol semacam itu bila distribusinya dianggap hampir normal. Solusi: ◦ Dihitung x-bar = 10.0 dan S = ◦ Dari tabel t db=6 = ◦ Selang kepercayaan 95% untuk rata-rata semua isi botol sejenis itu adalah

16 RATA-RATA 1 POP - 9

17 RATA-RATA 1 POP - 10 KESIMPULAN: Selang kepercayaan (1- α )100% untuk μ jika: a. σ diketahui dan n ≥ 30 b. σ tidak diketahui dan n < 30

18 LATIHAN 1. Suatu mesin minuman diatur sedemikian rupa sehingga banyaknya minuman yang dikeluarkannya berdistribusi hampir normal dengan standar deviasi 0.15 desiliter. Cari selang kepercayaan 95% untuk rata-rata semua minuman yang dikeluarkan mesin tersebut bila sampel acak 36 cangkir minuman berisi rata-rata 2.25 desiliter! 2. Sebuah mesin menghasilkan potongan logam yang berbentuk silinder. Sampel beberapa potongan diukur dan ternyata diameternya 1.01; 0.97; 1.03; 1.04; 0.99; 0.98; 0.99; 1.01; dan 1.03 cm. Hitunglah selang kepercayaan 99% untuk rata-rata diameter potongan yang dihasilkan mesin tersebut bila dimisalkan distribusinya hampir normal!

19 TUGAS

20 SELISIH RATA-RATA 2 POPULASI ESTIMASI RATA-RATA

21 SELISIH RATA-RATA 2 POP - 1 Bila ada 2 populasi masing-masing dengan rata-rata μ 1 dan μ 2, varians σ 1 2 dan σ 2 2, maka estimasi dari selisih μ 1 dan μ 2 adalah Sehingga,

22 SELISIH RATA-RATA 2 POP - 2 Dan,

23 SELISIH RATA-RATA 2 POP - 3 Selang kepercayaan (1- α )100% untuk μ 1 ‒ μ 2 ; σ 1 2 dan σ 2 2 diketahui: Contoh: Diketahui nilai ujian kimia yang diberikan pada 50 siswa putri dan 75 siswa putra mempunyai rata-rata secara berurutan adalah 76 dan 86. Cari selang kepercayaan 96% untuk selisih μ 1 ‒ μ 2. ! Anggap standar deviasi populasi untuk masing-masing putra dan putri adalah 8 dan 6.

24 SELISIH RATA-RATA 2 POP - 4 Misal: x-bar1 = 86 adl rata-rata nilai siswa putra, n 1 = 75 dan σ 1 = 8. x-bar2 = 76 adl rata-rata nilai siswa putri, n 2 = 50 dan σ 2 = 6. α = 0.04 → z 0.02 = 2.05 Selang kepercayaan 96% bagi selisih rata-rata nilai siswa putra dengan siswa putri adalah

25 SELISIH RATA-RATA 2 POP - 5 Interpretasi: 1.Dapat dipercaya 96% bahwa selisih rata-rata nilai ujian kimia semua siswa putra dengan siswa putri berkisar antara 3.43 hingga Dengan tingkat signifikansi 4%, rata-rata nilai ujian kimia semua siswa putra lebih tinggi antara 3.43 hingga 8.57 dari nilai ujian kimia semua siswa putri. 3.Dll.

26 SELISIH RATA-RATA 2 POP - 6 Selang kepercayaan (1- α )100% untuk μ 1 ‒ μ 2 ; dimana σ 1 2 = σ 2 2, σ 1 2 dan σ 2 2 tidak diketahui: dengan,

27 SELISIH RATA-RATA 2 POP - 7 Contoh: Dalam makalah “Macroinvertebrate Community Structure a sn Indicator of Acid Mine Pollution” yang diterbitkan di Journal of Enviromental Pollution (Vol.6, 1974), disajikan laporan mengenai penelitian yang dilakukan di Cane Creek, Alabama, untuk menentukan hubungan antara parameter fisiokimia yang terpilih dengan ukuran yang berlainan dari struktur kelompok makro invertebrata. Satu segi dari penelitian itu ialah penurunan kualitas air akibat pembuangan asam tambang. Dari segi konsep, indeks yang tinggi dari keragaman spesies makro invertebrata seharusnya menunjukkan sistem perairan tidak terganggu, sedangkan indeks keragaman yang rendah menunjukkan sistem perairan yang terganggu. Dua stasion sampling yang bebas dipilih untuk tujuan penelitian ini, satu di titik muara pembuangan asam tambang dan satu lagi di hulu. Sebanyak 12 sampel bulanan diambil dari stasiun muara, data indeks keragaman spesiesnya menghasilkan nilai rata-rata 3.11 dan standar deviasi 0.771, sedangkan dari stasiun hulu diambil 10 sampel bulanan dengan rata-rata indeks 2.04 dan standar deviasi Buat selang kepercayaan 90% untuk selisih rata-rata populasi dari kedua stasiun, anggap kedua populasi berdistribusi hampir normal dengan varians sama!

28 SELISIH RATA-RATA 2 POP - 8 Misal:  x-bar1 = 3.11 adl rata-rata indeks stasiun muara, n 1 = 12, S 1 =  x-bar2 = 2.04 adl rata-rata indeks stasiun hulu, n 2 = 10, S 2 =  Diasumsikan varians sama, maka  α = 0.1 → t 0.05 db= = t 0.05 db=20 =  Jadi, selang kepercayaan 90% untuk selisih rata-rata indeks keragaman spesies di muara dengan di hulu adalah

29 SELISIH RATA-RATA 2 POP - 9 Selang kepercayaan (1- α )100% untuk μ 1 ‒ μ 2 ; dimana σ 1 2 ≠ σ 2 2, σ 1 2 dan σ 2 2 tidak diketahui: dengan,

30 SELISIH RATA-RATA 2 POP - 10 Contoh: Suatu penelitian mengenai “Nutrient Retention and Macroinvertebrata Community Response to Sewage Stress in A Stream Ecosystem” yang dilakukan oleh Department of Zoology di Virginia Polytechnic Institute and State University tahun 1980 menaksir selisih banyaknya bahan kimia ortofosfor yang diukur pada dua stasion yang berlainan di Sungai James. Ortofosfor diukur dalam mg per liter. Lima belas sampel dikumpulkan dari stasion 1 dan 12 sampel diukur dari stasion 2. ke 15 sampel dari stasion 1 mempunyai rata-rata kadar ortofosfor 3.84 mg/l dan standar deviasi 3.07 mg/l, sedangkan 12 sampel dari stasion 2 mempunyai rata-rata kadar 1.49 mg/l dengan standar deviasi 0.80 mg/l. Cari selang kepercayaan 95% untuk selisih rata-rata kadar ortofosfor sesungguhnya pada kedua stasion tersebut, anggap bahwa pengamatan berasal dari populasi normal dengan varians yang berbeda!

31 SELISIH RATA-RATA 2 POP - 11 Misal:  x-bar1 = 3.84 adl rata-rata kadar ortofosfor stasion 1, n 1 = 15, S 1 =  x-bar2 = 1.49 adl rata-rata kadar ortofosfor stasion 2, n 2 = 12, S 2 =  Diasumsikan varians berbeda, maka  α = 0.05 → t db= v = t db=16 =  Jadi, selang kepercayaan 95% untuk selisih rata-rata kadar ortofosfor di stasion1 dengan stasion2 adalah

32 AMATAN BERPASANGAN ESTIMASI RATA-RATA

33 AMATAN BERPASANGAN -1 Sampel tidak bebas dan varians tidak perlu sama. Setiap satuan percobaan mempunyai sepasang pengamatan. Contoh: Pengujian metode diet A terhadap 15 orang → Akan diamati perubahan antara “sebelum” dengan “sesudah” diet.

34 AMATAN BERPASANGAN -2 Yang diamati adalah selisih untuk setiap amatan berpasangan (d i ). Sehingga,

35 AMATAN BERPASANGAN - 3 Contoh: Dalam makalah “Essential Elements in Fresh and Canned Tomatoes”, yang diterbitkan di Journal of Food Science (Jilid 46, 1981), kandungan unsur penting ditentukan dalam tomat segar dan kalengan menggunakan spektrofotometer penyerapan atom. Kandungan tembaga dalam tomat segar dibanding dengan kandungan tembaga pada tomat yang sama setelah dikalengkan dicatat dan hasilnya seperti di samping. Carilah selang kepercayaan 98% untuk selisih sesungguhnya rata-rata kandungan tembaga dalam tomat segar dan kaleng bila dianggap distribusi selisihnya normal. No.Tomat Segar Tomat Kaleng didi d-bar Sd

36 AMATAN BERPASANGAN - 4 Misal:  α = 0.02 → t 0.01 db= 9 =  Jadi, selang kepercayaan 98% untuk selisih kandungan tembaga pada tomat segar dengan tomat kalengan adalah  Jadi, dapat disimpulkan bahwa dengan tingkat kepercayaan 98% dipercaya selisih kandungan tembaga antara tomat kalengan dengan tomat segar berkisar antara hingga , sehingga dapat dikatakan bahwa kandungan tembaga dalam tomat kalengan lebih besar daripada tomat segar.

37 TUGAS

38 ESTIMASI PROPORSI 1 POPULASI PENDUGAAN PARAMETER

39 PROPORSI 1 POPULASI - 1 Estimator untuk P adalah (baca: p-hat / p-topi), dengan dimana x adalah banyaknya kejadian sukses dalam n kali percobaan (proses bernoulli). Pendekatan Binomial dengan Normal adalah

40 PROPORSI 1 POPULASI - 2 Definisi: Jika p-hat menyatakan proporsi yang sukses dalam sampel acak ukuran n, maka selang kepercayaan (1- α )100% untuk parameter binomial P adalah

41 PROPORSI 1 POPULASI - 3 Contoh: Pada suatu sampel acak 500 kaluarga yang memiliki pesawat televisi di kota Hamilton, Kanada, ditemukan bahwa 340 keluarga tv-nya berwarna. Carilah selang kepercayaan 95% untuk proporsi sesungguhnya dari keluarga yang memiliki tv berwarna di kota tersebut!

42 ESTIMASI SELISIH PROPORSI 2 POPULASI PENDUGAAN PARAMETER

43 SELISIH PROPORSI 2 POPULASI - 1 Definisi: Bila p1-hat dan p2-hat menyatakan proporsi sukses dalam sampel acak masing-masing berukuran n1 dan n2, maka selang kepercayaan (1- α )100% untuk selisih kedua parameter binomial P1-P2 adalah

44 SELISIH PROPORSI 2 POPULASI - 2 Contoh: Suatu perubahan dalam cara pembuatan suku cadang sedang direncanakan. Sampel diambil dari cara lama maupun yang baru untuk melihat apakah cara baru tersebut memberikan perbaiikan. Bila 75 dari 1500 suku cadang yang berasal dari cara lama ternyata cacat. Dan 80 dari 2000 yang berasal dari cara baru ternyata cacat. Carilah selang kepercayaan 90% untuk selisih sesungguhnya proporsi yang baik dalam kedua cara tersebut!

45 ESTIMASI VARIANS 1 POPULASI PENDUGAAN PARAMETER

46 VARIANS 1 POPULASI - 1 Estimasi selang untuk σ 2 diturunkan dengan menggunakan statistik χ 2 (baca: chi-square) dengan derajat bebas db = n-1 χ 2 1- α /2 1- α α /2 χ 2 α /2

47 VARIANS 1 POPULASI - 2 Definisi: Bila S 2 varians sampel acak ukuran n dari populasi normal maka selang kepercayaan (1- α )100% untuk σ 2 diberikan oleh

48 VARIANS 1 POPULASI - 3 Contoh: Data berikut menyatakan berat, dalam gram, 10 bungkus bibit sejenis tanaman yang dipasarkan oleh suatu perusahaan: 46.6; 46.1; 45.8; 47.0; 46.1; 45.9; 45.8; 46.9; 45.2; dan Carilah selang kepercayaan 95% untuk varians semua bungkusan bibit yang dipasarkan perusahaan tersbut, anggap populasinya normal!

49 ESTIMASI RASIO VARIANS 2 POPULASI PENDUGAAN PARAMETER

50 RASIO VARIANS 2 POPULASI - 1 Bila σ 1 dan σ 2 varians dua populasi normal, maka estimasi selang untuk rasio σ 1 / σ 2 diperoleh dengan menggunakan statistik F yakni Dengan derajat bebas v 1 =n 1 -1 dan v 2 =n 2 -1

51 RASIO VARIANS 2 POPULASI - 2 Bila S 1 2 dan S 2 2 varians dari sampel acak masing-masing berukuran n 1 dan n 2 dari populasi normal, maka selang kepercayaan (1- α )100% untuk rasio σ 1 / σ 2 adalah Varians dikatakan sama jika dan hanya jika selang mencakup nilai 1.

52 RASIO VARIANS 2 POPULASI - 3 Contoh: Suatu selang kepercayaan untuk perbedaan rataan kadar ortofosfor, diukur dalam mg/liter, pada dua stasiun di sungai James telah dihitung sebelumnya dengan menganggap kedua varians populasi normal tidak sama. Beri dukungan atas anggapan ini dengan membuat selang kepercayaan 98% untuk rasio σ 1 / σ 2 !


Download ppt "PENDUGAAN PARAMETER DARMANTO. PENDAHULUAN - 1 Statistika Inferensial → Terdiri atas metode untuk menarik kesimpulan atau memprediksi mengenai populasi."

Presentasi serupa


Iklan oleh Google