Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

Page 1 SISTEM PERSAMAAN LINEAR DUA VARIABEL SPLDV by Gisoesilo Abudi.

Presentasi serupa


Presentasi berjudul: "Page 1 SISTEM PERSAMAAN LINEAR DUA VARIABEL SPLDV by Gisoesilo Abudi."— Transcript presentasi:

1 Page 1 SISTEM PERSAMAAN LINEAR DUA VARIABEL SPLDV by Gisoesilo Abudi

2 Page 2 Sistem Persamaan Linear Dua Variabel Bentuk umum SPLDV Dengan a 1, a 2, b 1, b 2, c 1, dan c 2 adalah bilangan real. Persamaan (1) dan persamaan (2) merupakan suatu sistem persamaan karena keduanya saling berkaitan.

3 Page 3 Metode Eliminasi Prinsip yang digunakan untuk menghilangkan suatu variabel adalah mengurangkan atau menjumlahkannya.  U Untuk menghilangkan suatu variabel, koefisien dari variabel tersebut pada kedua persamaan harus sama. Jika belum sama, masing-masing persamaan dikalikan dengan bilangan tertentu sehingga variabel tersebut memiliki koefisien sama. JJika variabel yang akan dihilangkan bertanda sama, dua persamaan dikurangi, dan jika memiliki tanda yang berbeda, dua persamaan ditambah.

4 Page 4 Contoh 1 Tentukan himpunan penyelesaian dari sistem persamaan : Penyelesaian Untuk mencari variabel y berarti variabel x dieliminasi : + y = 38

5 Page 5 Untuk mencari variabel x berarti variabel y dieliminasi : + x = 29 Jadi himpunan penyelesaian dari sistem persamaan linear tersebut adalah {(29, 38)}

6 Page 6 Contoh 2 Penyelesaian Untuk mencari variabel y maka variabel x dieliminasi - -22y = 88 y = -4

7 Page 7 Untuk mencari variabel x maka variabel y dieliminasi + 22x = -44 x = -2 Jadi himpunan penyelesaian dari sistem persamaan linear tersebut adalah {(-2, -4)}

8 Page 8 Metode Substitusi Substitusi artinya mengganti atau menyatakan salah satu variabel dengan variabel lainnya. Contoh 1 Tentukan himpunan penyelesaian dari sistem persamaan :

9 Page 9 Penyelesaian Misalkan yang akan disubstitusi adalah variabel x pada persamaan (2), maka persamaan (1) dinyatakan dalam bentuk : 3x – 2y = 11 ⇔ 3x = 2y + 11 ⇔ …(3) Substitusikan nilai x pada persamaan (3) ke persamaan (2), sehingga :

10 Page 10 -4x + 3y = -2 ⇔ y = -2 (x3) ⇔ -4(2y + 11) + 9y = -6 ⇔ -8y – y = -6 ⇔ -8y + 9y = ⇔ y = 38 Untuk mendapatkan nilai x, substitusikan y = 38 ke persamaan (3) = = = 29 Jadi himpunan penyelesaian dari sistem persamaan linear tersebut adalah {(29, 38)}

11 Page 11 Contoh 2 Coba Anda selesaikan contoh 2 di atas dengan cara substitusi, apakah hasilnya sama seperti dengan cara eliminasi, karena contoh 1 kita peroleh penyelesaian yang sama (untuk cara eliminasi dan substitusi)

12 Page 12 Metode Gabungan (EliSusi) Metode Gabungan yaitu penggunaan dua metode yaitu eliminasi dan substitusi. Contoh 1 Tentukan himpunan penyelesaian dari sistem persamaan :

13 Page 13 Penyelesaian Untuk mencari variabel y berarti variabel x dieliminasi : + y = 38 Nilai y = 38 disubstitusikan ke persamaan (1) : 3x – 2y = 11 ⇔ 3x – 2(38) = 11 ⇔ 3x – 76 = 11 ⇔ 3x = ⇔ 3x = 87 ⇔ x = 29 Jadi himpunan penyelesaian dari sistem persamaan linear tersebut adalah {(29, 38)}

14 Page 14 Contoh 2 Coba Anda selesaikan contoh 2 di atas dengan cara gabungan, apakah hasilnya juga sama dengan cara eliminasi dan substitusi !

15 Page 15 Metode Grafik Coba anda tentukan himpunan penyelesaian sistem persamaan dengan menggunakan metode grafik. Apakah nilai x juga sama ketemu 29 dan nilai y = 38. Contoh 1 Tentukan himpunan penyelesaian dari sistem persamaan :

16 Page 16 Penyelesaian 3x – 2y = 11 -4x + 3y = -2 Tabel Tabel X03,7 Y- 5,50 (x, y)(0; -5,5)(3,7; 0) X00,5 Y- 0,70 (x, y)(0; -0,7)(0,5; 0) (29, 38) 3,7 -5,5 0,5 -0,7

17 Page 17 Contoh 2 Coba Anda selesaikan contoh 2 di atas dengan cara grafik, apakah hasilnya sama seperti dengan cara- cara yang lain.

18 Page 18 Aplikasi SPLDV Contoh 1 Di suatu toko Adi membeli 4 buku tulis dan 3 pensil dengan harga Rp9.750,00 dan Budi membeli 2 buku tulis dan sebuah pensil dengan harga Rp4.250,00. Jika Frida membeli 5 buku tulis dan 2 pensil, berapakah harga yang harus dibayar oleh Frida ? Penyelesaian Misal : Buku tulis = x, dan pensil = y Maka : Setelah diperoleh persamaan Anda bisa mengerjakan dengan metode yang telah Anda pahami.

19 Page 19 Aplikasi SPLDV Contoh 2 Beberapa hari yang lalu Rudi bersama temannya makan di rumah makan. Ia memesan 2 porsi makanan dan 3 gelas minuman, ia harus membayar Rp ,00. Seorang bapak dimeja sebelahnya memesan 4 porsi makanan dan 1 gelas minuman, bapak tersebut harus membayar Rp ,00. Berapakah harga 1 porsi makanan dan 1 gelas minuman? Penyelesaian Misal : Makanan = x, dan minuman = y Maka : Setelah diperoleh persamaan Anda bisa mengerjakan dengan metode yang telah Anda pahami.

20 Page 20 Agar kalian lebih memahami materi persamaan dan pertidaksamaan linear coba Anda kerjakan latihan di buku paket Erlangga. Jika kalian kelas x Kelompok BisMen kerjakan soal latihan halaman no Jika kalian kelas x kelompok Teknologi kerjakan soal latihan halaman 94 – 95 no. 1 – 10. Selamat Mencoba


Download ppt "Page 1 SISTEM PERSAMAAN LINEAR DUA VARIABEL SPLDV by Gisoesilo Abudi."

Presentasi serupa


Iklan oleh Google