Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

BARISAN & DERET GEOMETRI Oleh : Siswi Machmudah (K1305040) Pendidikan Matematika copyright  takizawa,2008.

Presentasi serupa


Presentasi berjudul: "BARISAN & DERET GEOMETRI Oleh : Siswi Machmudah (K1305040) Pendidikan Matematika copyright  takizawa,2008."— Transcript presentasi:

1 BARISAN & DERET GEOMETRI Oleh : Siswi Machmudah (K ) Pendidikan Matematika copyright  takizawa,2008

2 TUJUAN PEMBELAJARAN Siswa dapat menjelaskan pengertian barisan dan deret geometri Siswa dapat menjelaskan syarat suatu barisan geometri Siswa dapat menentukan rumus suku ke-n suatu barisan geometri Siswa dapat menentukan jumlah n suku suatu deret geometri Siswa dapat menjelaskan deret geometri tak hingga Siswa dapat menghitung jumlah deret geometri tak hingga

3 BARISAN GEOMETRI “ Seandainya kamu mempunyai satu lembar kertas ” “ Kemudian, kamu melipat kertas tersebut, satu kali ” Berapa banyak bagian (kotak) yang terbentuk pada kertas itu? 2 “ Jika, kamu melipat kertas tersebut, dua kali ” Berapa banyak bagian (kotak) yang terbentuk pada kertas itu? “ Jika, kamu melipat kertas tersebut, tiga kali ” Berapa banyak bagian (kotak) yang terbentuk pada kertas itu? “ Jika, kamu melipat kertas tersebut, empat kali ” Berapa banyak bagian (kotak) yang terbentuk pada kertas itu? “ Jika, kamu melipat kertas tersebut, n kali ” Berapa banyak bagian (kotak) yang terbentuk???

4 BARISAN GEOMETRI Dari kegiatan melipat kertas yang telah dilakukan, diperoleh Suatu barisan bilangan, sebagai berikut : dst Barisan bilangan tersebut merupakan salah satu contoh dari BARISAN GEOMETRI Masih ingatkah kalian dengan pola bilangan ?? Bagaimanakah pola bilangan dari barisan bilangan tersebut ???

5 BARISAN GEOMETRI Coba perhatikan barisan bilangan berikut !!! Suku ke-1  U 1 = 1 = 2 0 Suku ke-2  U 2 = 2 = 2 1 Kesimpulan apa yang kalian peroleh ??? Suku ke-2  U 2 = 2 = 2 1 Suku ke-3  U 3 = 4 = 2 2

6 BARISAN GEOMETRI SYARAT BARISAN GEOMETRI Nilai konstan disebut dengan pembanding atau rasio Suatu barisan bilangan dengan suku-suku U 1, U 2, U 3, …, U n disebut suatu barisan geometri apabila memenuhi syarat bahwa:

7 BARISAN GEOMETRI PENGERTIAN BARISAN GEOMETRI Berdasarkan syarat/ciri barisan geometri, yang telah dikemukakan di awal, maka : Bagaimanakah pengertian dari barisan geometri ??? Dapatkah kalian menjelaskan pengertian dari barisan geometri dengan kata-kata kalian sendiri ???? BARISAN GEOMETRI adalah suatu barisan dengan rasio (pembanding/pengali) antara dua suku yang berurutan selalu tetap Coba bandingkan ciri barisan geometri dengan barisan aritmatika yang telah kalian pelajari !!

8 BARISAN GEOMETRI MACAM BARISAN GEOMETRI Barisan Geometri Naik (Divergen) Ciri : U n-1 < U n untuk semua nilai n anggota bilangan asli dan n ≥ 2 Barisan Geometri Turun (Konvergen) Ciri : |U n | < |U n-1 | untuk semua nilai n anggota bilangan asli

9 BARISAN GEOMETRI Perhatikan Barisan Geometri berikut !!! U 1 U 2 U 3 U 4 U 5 U (2) 0 Diketahui : U 1 =a=1 dan r= a(r) 0 Kesimpulan apa yang kalian peroleh ??? 1(2) 1 1(2) 2 1(2) 3 1(2) 4 1(2) 5 a(r) 1 a(r) 2 a(r) 3 a(r) 4 a(r) 5

10 BARISAN GEOMETRI BENTUK UMUM BARISAN GEOMETRI Keterangan : a = suku pertama r = rasio a, ar, ar 2, ar 3, ar 4, …, U n Suatu barisan geometri dengan suku-suku U 1, U 2, U 3, U 4, U 5, …, U n Dapat dituliskan dalam bentuk umum:

11 BARISAN GEOMETRI RUMUS SUKU ke-n BARISAN GEOMETRI Kesimpulan apa yang kalian peroleh ??? Suku ke-1 = a=ar o Suku ke-2 = ar Suku ke-3 = ar 2 Suku ke-4 = ar 3 Suku ke-n = U n ar (1-1) ar (2-1) ar (3-1) ar (4-1) ar (n-1) Suatu barisan geometri dengan bentuk umum a, ar, ar 2, ar 3, ar 4, …, U n

12 BARISAN GEOMETRI RUMUS SUKU ke-n BARISAN GEOMETRI U n = ar n-1 Keterangan:a = suku pertama r = rasio n = banyak suku dengan Suatu barisan geometri dengan bentuk umum a, ar, ar 2, ar 3, ar 4, …, U n maka Rumus Suku ke-n Barisan Geometri adalah:

13 BARISAN GEOMETRI CONTOH SOAL 1 Diketahui barisan geometri : 3, 9, 27, 81, ……. Tentukan : a)Suku pertama b)Rasio c)Rumus suku ke-n d)Suku ke-10

14 BARISAN GEOMETRI SOLUSI CONTOH SOAL 1 Diketahui barisan geometri : 3, 9, 27, 81, ……. Jawab :a) Suku pertama = U 1 = 3 b) Rasio = c) Rumus suku ke-n = d) Suku ke-10 = ar n-1 = 3(3) n-1 = 3 n 3 10 = =3 1+(n-1)

15 BARISAN GEOMETRI CONTOH SOAL 2 Pada barisan geometri diketahui suku ke-3 = -8 dan suku ke-5 = -32 Tentukan suku ke-7 dari barisan tersebut! PENYELESAIANNYA ???

16 BARISAN GEOMETRI SOLUSI CONTOH SOAL 2 Diketahui : U 3 = -8 U 5 = -32ar 4 = -32 ar 2 = -8 maka : r 2 = 4r = 2 Karena ar 2 = -8a(2) 2 = -8 a = -2 Sehingga:U 7 = ar (7-1) = ar 6 = (-2)(2) 6 U 7 = -128

17 BARISAN GEOMETRI 1.Diketahui barisan geometri : 24, 12, 6, 3 …. Tentukan rasio dan suku keenam barisan itu ! 2.Suku ke-2 barisan geometri adalah 9, suku ke-5 adalah 1/3, tentukan suku ke-8 barisan tersebut ! 3.Tiga buah bilangan (2k-1), (k+4), (3k+6) membentuk barisan geometri naik yang ketiga sukunya positif, tentukan rumus suku ke-n !

18 DERET GEOMETRI PENGERTIAN DERET GEOMETRI DERET GEOMETRI adalah penjumlahan dari masing-masing suku dari suatu barisan geometri Deret Geometri dituliskan : U 1 + U 2 + U 3 + … + U n atau a + ar + ar 2 + … + ar n-1

19 DERET GEOMETRI RUMUS DERET GEOMETRI Jika U 1, U 2, U 3, …., U n merupakan barisan geometri dengan suku pertama a dan rasio r. maka jumlah n suku barisan geometri dinyatakan dengan rumus: Untuk r ≠ 1 dan r > 1 Untuk r ≠ 1 dan r < 1

20 DERET GEOMETRI PEMBUKTIAN RUMUS DERET GEOMETRI S n = U 1 + U 2 + U 3 + U 4 + … + U n = a + ar + ar 2 + ar 3 + …+ ar n-1 ……………………… (1) Dari persamaan (1) semua suku dikalikan dengan r r.S n = r (U 1 + U 2 + U 3 + U 4 + … + U n ) = r (a + ar + ar 2 + ar 3 + …+ ar n-1 ) = ar + ar 2 + ar 3 + ar 4 + …+ ar n ………………… (2) LANJUT

21 DERET GEOMETRI PEMBUKTIAN RUMUS DERET GEOMETRI Dari (1) dan (2) diperoleh: Sn = a + ar + ar 2 + ar 3 + …+ ar n-1 r.S n = ar + ar 2 + ar 3 + ar 4 + …+ ar n - S n – r.S n = a + (-ar n ) (1-r) S n = a - ar n

22 DERET GEOMETRI CONTOH SOAL 3 Hitunglah jumlah 6 suku pertama deret geometri: …. SOLUSI U 1 = a = 2 S 6 = 728

23 DERET GEOMETRI CONTOH SOAL 4 Hitunglah jumlah deret geometri: … PENYELESAIANNYA ??? Ayo kita kerjakan bersama-sama !!!

24 DERET GEOMETRI DERET GEOMETRI KONVERGEN Deret geometri a + ar + ar 2 + … + ar n-1 disebut deret geometri turun tak terhingga (konvergen), jika |r| < 1 atau -1 < r < 1 Jumlah deret geometri tak terhingga dirumuskan : Dengan :a = suku pertama r = rasio

25 DERET GEOMETRI CONTOH SOAL 5 Tentukan nilai dari deret geometri : … SOLUSI Dari DG: …. a = U 1 = 24

26 DERET GEOMETRI LATIHAN SOAL 1.Hitunglah jumlah deret geometri … Hitunglah jumlah tak terhingga deret geometri …. 3.Diketahui deret geometri …. + 2 n =510. Tentukan nilai n ! 4.Diketahui deret geometri dengan U 2 = 6 dan U 4 =54. Hitung jumlah delapan suku pertamanya !

27 RANGKUMAN MATERI Bentuk Umum Barisan Geometri adalah: a + ar + ar 2 + ar 3 + … + ar n-1 dimana : a = suku pertama r = rasio = U n /U n-1 Rumus suku ke-n Barisan Geometri adalah : U n = ar n-1

28 RANGKUMAN MATERI Rumus jumlah n suku Deret Geometri adalah : Untuk r ≠ 1 dan r > 1 Untuk r ≠ 1 dan r < 1 Rumus jumlah Deret Geometri Tak Hingga adalah :

29 MATERI BARISAN DAN DERET GEOMETRI TELAH SELESAI. KERJAKAN SOAL-SOAL LATIHAN DALAM MODUL !! SEKIAN DAN TERIMA KASIH SELAMAT MENGERJAKAN … !!! SELAMAT BELAJAR !!!


Download ppt "BARISAN & DERET GEOMETRI Oleh : Siswi Machmudah (K1305040) Pendidikan Matematika copyright  takizawa,2008."

Presentasi serupa


Iklan oleh Google